POCKET BOOK

The Uddeholm range of tooling materials

AL SCONDET THE WORLD'S LIADING SUPPLIER OF TOOLING MATHER
GENESS STEED-STH INHOVATION SKIDWLEDGE UNDESTRUKDING MACHINARI
GENESS STEED-STH INHOVATION SKIDWLEDGE UNDESTRUKDING MACHINARI
ADING SUPPLIER OF STEELAND SKIDWLEDGE UNDESTRUKDING MACHINARI
ADING SUPPLIER OF STEELAND MACHINARILITY TRUST IS SOMETHING TO
ATTOM SHOW, ONLY SHIDWLEDGE MACHINARILITY TRUST IS SOMETHING TO
IN OF EXCELLENCE WORLDWIDE FREEDY.

MAGBILITY TRUST IS SOMETHING TOOL EARN, EVERY DAY LONG AS THE TOOLS
AND HABILITY TRUST IS SOMETHING TOOL SANN, EVERY DAY LONG AS THE TOOLS
AND HABILITY TRUST IS SOMETHING TOOL SANN, EVERY DAY LONG AS THE TOOLS
AND HABILITY TRUST IS SOMETHING TOOL SANN, EVERY DAY LONG AS THE TOOLS
AND HABILITY TRUST IS SOMETHING TOOL SANN, EVERY DAY LONG AS THE TOOLS
AND HABILITY TRUST IS SOMETHING TOOL SANN, EVERY DAY LONG AS THE TOOLS
AND HABILITY TRUST IS SOMETHING TOOL SANN, EVERY DAY LONG AS THE TOOLS
AND HABILITY TRUST IS SOMETHING TOOL SANN, EVERY DAY LONG AS THE TOOLS
AND HABILITY TRUST IS SOMETHING TOOL SANN, EVERY DAY LONG AS THE TOOLS
AND HABILITY TRUST IS SOMETHING TOOL SANN, EVERY DAY LONG AS THE TOOLS
AND HABILITY TRUST IS SOMETHING TOOLS
AND HABILITY TRUST

ENGINE ANTI-STREET OF THE STREET OF THE STRE

IER OF THE RETERIORS WATERIALS PARTIES THE HARDIES WORLDWIDE TO THE LOCAL PROPERTY OF THE PROP

REDIZIN ALTONO IN A REW WAY OF THIRDING HIGH MERFORMANCE COCKE

RECOLOR LINE AUTORIS OF TOOLING NATIONAL SACROMARILITY TRUST

RELIVETH INNOVATION ENGAGED OF TOOLING NATIONAL SACROMARILITY TRUST

RESPONDED TO THE PROPERTY OF TOOLING NATIONAL SACROMARILITY TRUST

RESPONDED TO THE PROPERTY OF THE PROPERT

THE SOLVING POOR THE STATE OF THE SOLVING PROPERTY OF

ANT COMMITTHENT PROTECTIONS HARDING MINORATION AND AUTOMATICAL AND AUTOMATICAL

444

CONTENTS

UDDEHOLM STEEL GRADES - Composition	4 – 5 6 – 7
STEEL FOR COLD WORK TOOLING	10–15
STEEL FOR INDUSTRIAL KNIVES	16–18
STEEL FOR DIE CASTING DIES	19–21
STEEL FOR EXTRUSION DIES	22–24
STEEL FOR FORGING DIES	25–26
MATERIALS FOR PLASTIC MOULDS	27–33
PRINCIPLES OF HARDENING	35
POWDER METALLURGY TOOL STEEL	36–37
UDDEHOLM HIGH PERFORMANCE STEEL-HPS	38–41
PRE-MACHINED TOOL STEEL	42-43
MACHINING SERVICE	44
HINTS ON - improved tool performance - basic tool design - tool heat treatment - repair welding - grinding tool steel - EDM - polishing mould steel - photo-etching	47–48 48 49
HARDNESS CONVERSION TABLE	53
CONVERSION FACTORS AND FORMULAE	54–55
SI-UNITS OF MEASUREMENT	56–61
CONVERSION TABLE (temperature scale)	62–63
WEIGHT TABLES	
DESIGNATIONS	69
DDINITED MATERIAL	70

ddeholm Tooling Pocket Book presents, in a concise form, the Uddeholm range of high quality tool steel developed to meet specific needs and applications.

The information in this pocket book is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty of specific properties of the products described or a warranty for fitness for a particular purpose.

All information concerning the wide range of Uddeholm tool materials can't be given in this booklet but more detailed information and advice is readily available from your nearest Uddeholm office.

The wide range of printed material and technical information available is summarized on the last page.

UDDEHOLM STEEL GRADES — Composition

Uddeholm				Т	ypical	analys	is		
Grade	Colour code	С	Si	Mn	Cr	Mo	Ni	V	S
ALVAR 14	White/Black	0.55	0.3	0.7	1.1	0.5	1.7	0.1	
ALVAR	Red/Black	0.45	0.7	8.0	1.8	0.3	0.5	0.2	w
ARNE	Yellow	0.95	0.3	1.1	0.6			0.1	0.6
CALDIE	White/grey	0.70	0.2	0.5	5.0	2.3		0.5	
CALMAX	White/Violet	0.60	0.35	8.0	4.5	0.5		0.2	
CARMO	Red/Violet	0.60	0.35	8.0	4.5	0.5		0.2	
CHIPPER ²⁾	_	0.50	1.0	0.5	8.0	1.5		0.5	Al
CORRAX	Black/Grey	0.03	0.3	0.3	12.0	1.4	9.2		1.6
DIEVAR	Yellow/Grey	0.35	0.2	0.5	5.0	2.3		0.6	
ELMAX1)	Blue/Black	1.70	8.0	0.3	18.0	1.0		3.0	
FERMO ²⁾	_	0.48	0.4	0.9	1.5				
FORMAX	Black	0.18	0.3	1.3					
HOLDAX	Yellow/blue	0.40	0.4	1.5	1.9	0.2			0.07
HOTVAR	Red/Brown	0.55	1.0	0.8	2.6	2.3		0.9	
IMPAX									max.
HI HARD	Brown	0.37	0.3	1.4	2.0	0.2	1.0		0.01
IMPAX									max.
SUPREME	Yellow/Green	0.37	0.3	1.4	2.0	0.2	1.0		0.01
MIRRAX ESR	3)	0.25	0.35	0.55	13.3	0.35	1.35	0.35	+N
NIMAX	Light blue/								
ODVAD	Dark blue	0.1	0.3	2.5	3.0	0.3	1.0		
ORVAR SUPREME	Orange	0.39	1.0	0.4	5.2	1.4		0.9	
ORVAR	Orange	0.57	1.0	0. 1	3.2			0.7	
SUPERIOR	Blue/Grey	0.39	1.0	0.4	5.2	1.4		0.9	
ORVAR 2 M ⁴⁾	Orange/Violet	0.39	1.0	0.4	5.3	1.3		0.9	
POLMAX	Green/Black	0.38	0.9	0.5	13.6			0.3	
ORO 90									
SUPREME	Orange/Brown	0.38	0.3	0.8	2.6	2.3		0.9	
RAMAX HH	5)	0.12	0.2	1.3	13.4	0.5	1.6	0.2	0.1 +N
RAMAX LH	Yellow/Brown	0.12	1.0	1.45	14.0	0.2	0.36	0.1	0.13 +N
RIGOR	Red/Green	1.00	0.3	0.6	5.3	1.1		0.2	
SLEIPNER	Blue/Brown	0.90	0.9	0.5	7.8	2.5		0.5	
SR 1855	Red/Blue	0.95	1.5	0.8	1.0				
STAVAX ESR	Black/Orange	0.38	0.9	0.5	13.6			0.3	

 $^{^{1)}}$ Powder Metallurgy tool steel. $^{2)}$ Minimum order quantity. $^{3)}$ Black/Orange with a white line across. $^{4)}$ M = Microdized $^{5)}$ Black/Brown with a white line across.

Uddeholm				Ту	pical a	nalysis	5		
Grade	Colour code	С	Si	Mn	Cr	Мо	Ni	V	S
									W
SVERKER 3	Red	2.05	0.3	8.0	12.7				1.1
SVERKER 21	Yellow/White	1.55	0.3	0.4	11.8	8.0		8.0	
THG 2000	Yellow/Violet	0.39	0.5	0.4	5.3	1.3		0.9	
UHB 11	White	0.50	0.2	0.7					
UNIMAX	Brown/Grey	0.50	0.2	0.5	5.0	2.3		0.5	
VANADIS 4									
EXTRA ¹⁾	2)	1.40	0.4	0.4	4.7	3.5		3.7	
VANADIS 61)	Green/								
	Dark green	2.10	1.0	0.4	6.8	1.5		5.4	
VANADIS 10 ¹⁾	Green/Violet	2.90	0.5	0.5	8.0	1.5		9.8	
							W		N
VANCRON 40 ¹⁾	Gold/Dark blue	1.10	0.5	0.4	4.5	3.2	3.7	8.5	1.8
VIDAR SUPERIOR	3)	0.36	0.3	0.3	5.0	1.3		0.5	
VIDAR 1	Orange/	0.36	0.3	0.3	5.0	1.3		0.5	
VIDAR I	Light blue	0.38	1.0	0.4	5.0	1.3		0.4	
	6	0.00		• • • •	5.0			•••	
High speed steel		С			Cr	Мо	W	V	Co
VANADIS 231)	Violet	1.28			4.2	5.0	6.4	3.1	
VANADIS 301)	Green	1.28			4.2	5.0	6.4	3.1	8.5
VANADIS 601)	Gold	2.30			4.2	7.0	6.5	6.5	10.5

¹⁾ Powder Metallurgy tool steel.

²⁾ Green/white with a black line across.

³⁾ Orange/red with a white line across.

International Standards Comparison Chart

Uddeholm Grade	ASSAB	AISI (USA)	BS4659 (GB)	WNr. (Germany)	SS (Sweden)	JIS (Japan)
ALVAR 14	ALVAR 14		,	1.2714	,	
ALVAR 14 ALVAR	ALVAN 14	_	_	1.2329	_	_
ARNE	DF-2	_ O1	- ВО1	1.2510	_ 2140	SKS 3
CALDIE	CALDIE	Oi	-	1.2310	2170	31/3 3
CALMAX	635 ¹⁾	_	_	1.2358	_	_
CALMAX	CARMO	_	_	1.2358	_	_
CHIPPER	VIKING	_	_	(1.2631)	_	_
CORRAX	CORRAX	_	_	(1.2031)	_	_
DIEVAR	DIEVAR	_	_	_	_	_
ELMAX ²⁾	ELMAX ²⁾	_	_	_	_	-
	ELIMAX-	_	_	_	_	-
FERMO FORMAX	_	_	_	_	_ 2172	-
HOLDAX	_	_	_	4 2242	21/2	-
	- LIOT/AB	_	_	1.2312	_	-
HOTVAR	HOTVAR	_	_	_	_	-
IMPAX HI HARD	718 HH	_		_	_	_
IMPAX	7101111	P20	_	_	_	_
SUPREME	718 SUPREME	modified	_	1.2738	_	_
MIRRAX ESR	MIRRAX ESR	420, mod.	_	_	_	SUS
		.20,0				420 mod.
NIMAX	NIMAX	_	_	_	_	-
ORVAR		H13				
SUPREME	8407 SUPREME	improved	BH13	1.2344	2242	SKD 61
ORVAR		H13	D1 143	4.00.44	22.42	01/5 //
SUPERIOR	-	improved	BH13	1.2344	2242	SKD 61
ORVAR 2 M³)	8407-2M	H13	BH13	1.2344	2242	SKD 61
POLMAX	-	420, mod.	_	(1.2083)	2314	SUS 420
QRO 90 SUPREME	S-168					
RAMAX HH	3-166	(420E)	_	_	_	-
	_	(420F)		_	_	-
RAMAX LH	– XW-10	(420F) A2	_ BA2	1 2242	2260	CND 13
RIGOR		AZ	BA2	1.2363	2260	SKD 12
SLEIPNER CD 4055	ASSAB 88	_	_	- (4.2400)	-	-
SR 1855	C 434 ECD4)	420	_	(1.2108)	2092	- CLIC 420
STAVAX ESR	S-136 ESR ¹⁾	420, mod.	-	(1.2083)	2314	SUS 420

Some equivalents are approximate only ().

1) Designation used in South China and Taiwan. 2) Powder Metallurgy tool steel.

³⁾ M = Microdized

Uddeholm Grade	ASSAB	AISI (USA)	BS4659 (GB)	WNr. (Germany)	SS (Sweden)	JIS (Japan)
SVERKER 3	XW-5	(D6)	BD6	(1.2436)	2312	(SKD 2)
SVERKER 21	XW-42	D2	BD2	1.2379	2310	SKD 11
THG 2000	THG 2000	-	_	_	_	_
UHB 11	-	11 4 8	_	1.1730	1650/ 1672	_
UNIMAX	UNIMAX	-	_	_	_	-
VANADIS 4 EXTRA ¹⁾	VANADIS 4 EXTRA ¹⁾	_	_	_	_	
VANADIS 61)	VANADIS 61)	_	_	_	_	_
VANADIS 101)	VANADIS 10 ¹⁾	_	_	_	_	_
VANCRON 401)	VANCRON 401)	-	_	_	_	-
VIDAR	VIDAR			1.2340		
SUPERIOR	SUPERIOR	(H11) ²⁾	(BH 11)	$(1.2343)^{2}$	_	(SKD 6)
VIDAR 1	_	H11	BH11	1.2343	_	SKD 6
High speed steel						
VANADIS 231)	_	M3:2	_	1.3344	2725	-
VANADIS 301)	_	M3:2+Co	_	(1.3207)	2726	-
VANADIS 60 ¹⁾	_	-	-	(1.3241)	2727	-

Some equivalents are approximate only ().

¹⁾ Powder Metallurgy tool steel.

²⁾ Premium modified.

Basic Heat Treatment Guide*

Uddeholm Grade	HB¹)	Soft- annealing temp. °C	Austenitizing (hardening) temperature °C	Quenching medium
ALVAR 14	≤250	700	830- 900	Oil, step, gas
ALVAR	≤250	780	880- 920	Oil, step, gas
ARNE	190	780	790- 850	Oil, step bath
CALDIE	215	860	1000–1025	Gas, step
CALMAX	200	860	950- 970	Oil, step, gas
CARMO	~250**	860	950- 970	Oil, step, gas
CHIPPER	225	880	980–1050	Oil, step
CORRAX	~330	_	solution treat. 850	Gas
DIEVAR	~160	850	1000–1030	Oil, step, gas
ELMAX ²⁾	280	980	1050–1100	Oil, step, gas
FERMO	270**	770	flame hard. 850	Gas(water)
FORMAX	170	_	-	-
HOLDAX	~310**	700	as-del. cond.	-
HOTVAR	~210	820	1050–1070	Oil, step, gas
IMPAX HI HARD	~380**	700	-	-
IMPAX SUPREME	~310**	700		
MIRRAX ESR	~310*** 250	700 740	- 1000–1025	– Gas, step
NIMAX	~380**	740	as-del. cond.	Gas, step
ORVAR	~300	_	as-dei. cond.	_
SUPREME	180	850	1020–1050	Oil, step, gas
ORVAR SUPERIOR	180	850	1020–1050	Oil, step, gas
ORVAR 2 M ³⁾	180	850	1020-1050	Oil, step, gas
POLMAX	215	890	1000–1050	Oil, step, gas
ORO 90				, cccp, 6s
SUPREME	180	820	1020–1050	Oil, step, gas
RAMAXHH	~340**	740	as-del. cond.	
RAMAX LH	~290**	740	as-del- cond.	-
RIGOR	215	850	925– 960	Oil, step, gas

^{*} Detailed heat treatment rec. are published for each steel grade. Stress relieving: after rough machining the tool should be heated through to 650°C. Holding time: 2h. Cool slowly to 500°C, then freely in air. (Exception: Uddeholm Impax Supreme, Uddeholm Holdax, Uddeholm Ramax LH, Uddeholm Ramax HH and Uddeholm Fermo use 550°C as stress relieving temp. For Uddeholm Nimax use 450°C.)

^{**}Pre hardened

¹⁾ Normal delivery hardness. 2) Powder Metallurgy tool steel. 3) M = Microdized

Uddeholm Grade	HB¹)	Soft- annealing temp. °C	Austenitizing (hardening) temperature °C	Quenching medium
SLEIPNER	~235	850	950–1080	Gas, step
SR 1855	210	810	850- 880	Oil, step bath
STAVAX ESR	215	890	1010–1050	Oil, step, gas
SVERKER 3	240	850	920–1000	Step, gas
SVERKER 21	210	850	990–1050	Step, gas
THG 2000	185	850	900–1030	Oil, step bath, gas
UHB 11	~200	700	as-del. cond.	_
UNIMAX	185	850	1000–1025	Gas, step
VANADIS 4 EXTRA ²⁾	230	900	980–1100	Gas, step
VANADIS 6 ²⁾	255	900	1000–1100	Gas, step
VANADIS 10 ²⁾	275	900	980–1100	Gas, step
VANCRON 40 ²⁾	300	900	950–1100	Gas, step
VIDAR SUPERIOR VIDAR 1	180 180	850 850	980–1000 990–1010	Oil, step, gas Oil, step, gas
High speed steel				
VANADIS 23 ²⁾	260	875	1050–1180	Gas, step
VANADIS 30 ²⁾	300	875	1000–1180	Gas, step
VANADIS 60 ²⁾	300	875	1000–1180	Gas, step

¹⁾ Normal delivery hardness.

²⁾ Powder Metallurgy tool steel.

Approx. Hardness after Hardening and Tempering

	Austenitizing						
Uddeholm Grade	°C	200	250	500	525	550	600
ALVAR 14	850¹)	54	53	45	_	42	38
ALVAR	900	54	53	45	_	43	41
ARNE	830 ¹⁾	62	60	45	43	41	38
CALDIE	1020	_	_	-	61***	59	50
CALMAX	960	59	58	53	53	50	43
CARMO	960	59	58	53	53	50	43
CHIPPER	1010	59	57	5 9 *	58	56	48
CORRAX	850 ²⁾	_	_	_	_	_	-
DIEVAR	1025	53	52	52*	_	52	47
ELMAX ³⁾	1080	59	58	60**	59**	58**	-
FERMO	-	_	_	_	_	_	-
FORMAX	-	_	_	_	_	_	-
HOLDAX	-	_	_	_	_	-	-
HOTVAR	1050	_	56	_	_	57	53
IMPAX HI HARD	-	_	_	_	_	_	_
IMPAX SUPREME	_	_	_	_	_	_	_
MIRRAX ESR	1020	_	50	52**	_	42**	36
NIMAX ⁴⁾	-	_	_	_	_	_	-
ORVAR SUPREME	1020	52	52	54*	_	52	46
ORVAR SUPERIOR	1020	52	52	54*	_	52	46
ORVAR 2 MICRODIZED	1020	52	52	54*		52	46
POLMAX	1030	53	52	54**	_	43**	37

 $[\]ensuremath{^{*}}$ This tempering temp. should be avoided due to the risk of temper brittleness.

^{**} For Uddeholm Stavax ESR, Uddeholm Mirrax SER, Uddeholm Polmax and Uddeholm Elmax corrosion resistance is reduced.

^{***} The lowest tempering temperature when high temperature tempering is 525°C.

¹⁾ Quench in oil

 $^{^{2)}}$ Solution treatment. Ageing: ~50 HRC after 525°C/2 h, ~46 HRC after 575°C/2h, ~40 HRC $\,$ after 600°C/4h.

³⁾ Powder Metallurgy tool steel

⁴⁾ The delivery hardness of Uddeholm Nimax can not be increased. Tempering shall be avoided as toughness will be reduced.

Uddeholm	Austenitizing	HRC at tempering temperature °C, 2 x 2 h					1
Grade	°C	200	250	500	525	550	600
QRO 90							
SUPREME	1020	49	49	51*	_	51*	50 ¹⁾
RAMAX HH	-	_	_	-	_	-	-
RAMAX LH	-	_	_	_	_	_	-
RIGOR	950	61	58	56*	55*	53	48
SLEIPNER	1030	60	59	62	62****	60****	48
SR 1855	850	63	62	50	48	46	42
STAVAX ESR	1030	53	52	54**	_	43**	37
SVERKER 3	960	60	59	56	53	_	-
SVERKER 21	1020	63	59	60	57	54	48
THG 2000	1020	52	52	53*	_	52	46
UHB 11	-	_	_	_	_	_	-
UNIMAX	1020	-	-	-	-	55	49
VANADIS 4						A Beliefel	
EXTRA ²⁾	1020	_	_	_	61	60***	52
VANADIS 6 ²⁾	1050	63	62	63	61	59**	52
VANADIS 10 ²⁾	1060	63	62	65	62	60**	52
				3 x 560°C			
VANCRON 40 ²⁾	950–1100			57–65			
VIDAR Superior	1000	52	51	51*		50	45
VIDAR 1	1000				_		45 46
VIDAK I	1000	54	53	55*	_	52	40
High speed steel				3 x 560°C	:		
VANADIS 23 ²⁾	1050–1180			60–66			
VANADIS 30 ²⁾	1000–1180			60–67			
VANADIS 60 ²⁾	1000–1180			64–69			

 $[\]ensuremath{^{*}}$ This tempering temp. should be avoided due to the risk of temper brittleness.

^{**} The lowest tempering temperature when high temperature tempering is $525^{\circ}C$.

^{***} The lowest tempering temperature when high temperature tempering is 525°C (for hardening temperatures >1050°C: 540°C).

^{****} The lowest tempering temperature when high temperature tempering is 525° C (for hardening temperatures >1050°C: 540° C).

¹⁾ At 650°C 2 x 2h: 42 HRC

²⁾ Powder Metallurgy tool steel.

STEEL FOR COLD WORK TOOLING

Blanking, piercing, cropping, bending, forming

Uddeholm	
grade	Description/Applications
ARNE	A versatile tool steel for low production volume die sets for blanking, forming and deburring and for forming rolls. It is also suitable for gauges, bushes and engineering parts exposed to high stresses.
CALDIE	A modern matrix tool steel for cold work applications with high demands on chipping / cracking resistance and compressive strength. Uddeholm Caldie is a robust tool steel and is suitable for medium production volume tooling for blanking and forming difficult production materials such as advanced high strength steel.
CALMAX	A very versatile steel with adequate wear resistance and very high toughness. It is very suitable for low to medium production volume tooling for blanking thick production materials or in general when the tooling is exposed to high stresses.
RIGOR	A steel with a good combination of toughness, wear resistance and dimensional stability in hardening. It is a general cold work steel for medium production volume tooling.
SLEIPNER	A versatile steel with a very broad properties profile ranging from good wear resistance, compressive strength and good chipping / cracking resistance to good hardenability and machinability. This means that Uddeholm Sleipner is a modern general purpose steel for medium production volume tooling.
SVERKER 3	A steel similar to Uddeholm Sverker 21 but with more and larger carbides. It has an excellent abrasive wear resistance and this means that it is suitable for applications like brick pressing and transformer plate blanking.
SVERKER 21	A 12% chromium steel suitable for medium production volume tooling where the production materials cause abrasive wear and the risk of chipping is not so high.

UNIMAX	A problem solver for applications where the demands on chipping / cracking resistance are very high. Uddeholm Unimax is a matrix steel with a unique combination of chipping / cracking resistance and wear resistance.
VANADIS 4 EXTRA	A cold work tool steel produced by the powder metallurgy process. It is characterized by a superior combination of wear and chipping resistance and is particularly suitable for high volume production tooling for production materials such as annealed austenitic stainless steel, mild carbon steel, copper and aluminium.
VANADIS 6	Uddeholm Vanadis 6 is a cold work steel produced by the powder metallurgy process and is characterized by high wear resistance and good chipping resistance and compressive strength. It has a simpler (cold work) heat treatment than a PM high speed steel and a better wear resistance than Uddeholm Vanadis 23. It is suitable for high volume production tooling for hard to medium hard production materials.
VANADIS 10	A cold work tool steel produced by the powder metallurgy process. It is characterized by a very high abrasive wear resistance coupled with reasonable toughness. It is very suitable for high volume production tooling for paper and foil slitting, granulation of plastics, gaskett stamping and electrical sheet stamping.
VANADIS 23	Uddeholm Vanadis 23 is a high speed steel produced by the powder metallurgy process and is characterized by high wear resistance coupled with high chipping resistance and high compressive strength. It is suitable for high volume production tooling for hard to medium hard production materials.
VANCRON 40	Uddeholm Vancron 40 is a nitrogen alloyed PM steel for applications where galling is the main failure mechanism. Its very low friction coefficient and surface topography after polishing mean that it is often not necessary to surface coat the tool to avoid galling.

Cont.

UHB 11	A bolster steel with medium high carbon content suitable for top and bottom plates and higher strength support parts.
FORMAX	A bolster steel with low carbon content suitable for large top and bottom plates and medium strength supports.
HOLDAX	A prehardened bolster steel for support plates and holders.

Steel for Special Applications

Uddeholm grade	Description/Applications
CARMO	A prehardened steel particularly suitable for car body dies. It can be flame / induction hardened or through hardened and has a much better weldability than other cold work tool steel. It is suitable for low production volume tooling in general and for prototype tooling.
SR 1855	A low alloyed tool steel very suitable for profile rolls.
VANCRON 40	A nitrogen alloyed PM steel which often need not be coated to avoid galling, sticking and adhesive wear.

A comprehensive product brochure is available for each steel grade and contains information on application areas, heat treatment, machining, grinding etc.

Property Comparison Guide for Cold Work Steel

Uddeholm grade	Hardness	Machin- ability	Grind- ability	Dimension stability	Ductility
ARNE					
CALDIE					
CALMAX					
RIGOR					
SLEIPNER					
SVERKER 3					_
SVERKER 21					
UNIMAX VANADIS 4 EXTRA					
VANADIS 6					
VANADIS 10					
VANADIS 23					
VANCRON 40					

Selection Chart

Part	Uddeholm grade	Hardness HRC
Punches, dies	ARNE, CALDIE, CALMAX, RIGOR, SVERKER 3, SVERKER 21, SLEIPNER, UNIMAX, VANADIS 4 EXTRA, VANADIS 6, VANADIS 10, VANADIS 23, VANCRON 40	54–64
Top- and bottom plates	FORMAX, UHB 11, HOLDAX	As supplied
Punch backing plate	ARNE	58–60
Punch retaining plate	ARNE precision ground flat stock	-
Stripper plate/ strip guide	ARNE, UHB 11 precision ground flat stock	-

The tool steel choice and hardness level will depend on the production material type, its thickness and hardness and the intended production volume.

Other "Cold Work" Applications

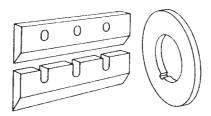
Application	Uddeholm grade		
Cold rolls	ROP 20, SLEIPNER, SVERKER 21, VANADIS 6 VANADIS 10, VANADIS 23, VANCRON 40		
Forming rolls	SVERKER 21, CALDIE, CALMAX, SLEIPNER, VANADIS 4 EXTRA, VANADIS 6, VANADIS 10, VANADIS 23, VANCRON 40		
Pressing of ceramics	SVERKER 3, SVERKER 21		
Powder metal compaction	CALDIE, UNIMAX, VANADIS 4 EXTRA, VANCRON 40		

Steel selection

When selecting a tool steel for any cold work operation it is important to identify which failure mechanism(s) is/are limiting the tool life:

- wear (abrasive/adhesive)
- · chipping/cracking
- plastic deformation

The proper tool steel for the situation can be selected by means of the following comparison chart, which gives the relative resistance to the above failure mechanisms for the Uddeholm cold work tool steel.


Property Comparison Guide for Cold Work Steel

	Hardness/ Resistance			Resistance resistance		ince
Uddeholm Grade	against plastic deformation	Wear re	sistance Adhesive	Ductility/ chipping	Toughness/ Gross cracking	
ARNE CALDIE CALMAX				=		
RIGOR SLEIPNER		=	Ξ	=		
SVERKER 3 SVERKER 21 UNIMAX		=	Ε.	<u> </u>	<u> </u>	
VANADIS 4 EXTRA VANADIS 6		=		=	_	
VANADIS 10 VANADIS 23						
VANCRON 40						

A rule of thumb is to select a steel with higher performance to avoid premature failures with such consequences as late deliveries and extra costs.

STEEL FOR INDUSTRIAL KNIVES

Close attention is paid to straightness, squareness, tolerance and decarburization levels on Uddeholm tool steel intended for the large-scale production of knives and cutters.

Uddeholm grade	Description/Applications	
CHIPPER	Cr-Mo-alloyed steel developed by Uddeholm especially for chipper-knives and other knives exposed for high stresses. Combine toughness with wear resistance very well.	
SVERKER 3 SVERKER 21	Steel with high C-Cr-content and an excellent wear resistance. Suitable for wood milling cutters.	
VANADIS 4 EXTRA	Cold work tool steel produced by the powder metallurgy process. Superior adhesive wear resistance and toughness.	
VANADIS 6 VANADIS 10	Cold work tool steel produced by the powder metallurgy process. Very high abrasive wear resistance and fairly good toughness. Tool steel very suitable for severe abrasive conditions and long runs.	
VANADIS 23	High speed steel produced by the powder metallurgy process. Good combination of wear resistance, chipping resistance and compressive strength. Suitable for production materials which cause mixed or abrasive wear.	
RIGOR	A tool steel with a good combination of toughness and general wear resistance.	
CALDIE	A robust tool steel with a good combination of high compressive strength and wear resistance and high chipping resistance.	
CALMAX	Tool steel with a properties profile devoted to safe production, i.e. high chipping and cracking resistance and a fairly good wear resistance.	

UNIMAX	A really robust tool steel and the best choice for difficult blanking applications with demands on high hardness (max. 58 HRC) and very high chipping resistance.
SLEIPNER	A tool steel with properties well suited for knife applications. Good wear resistance, good resistance to chipping and high compressive strength give a knife with a good edge retention.
ARNE	Low alloyed universal tool steel for short runs. Excellent machinability.

Property Comparison Chart for Uddeholm Tool Steel for Industrial Knives

Uddeholm grade	Chipping resistance	Wear resistance	Machin- ability	Dimensional stability at hardening
ARNE				
CALDIE				
CALMAX				
CHIPPER				
RIGOR				
SLEIPNER				
SVERKER 3				
SVERKER 21				
UNIMAX				
VANADIS 4				
EXTRA				
VANADIS 6				
VANADIS 10				
VANADIS 23				

Selection Chart

Part		Uddeholm grade	HRC
Chipper knives	s	CHIPPER	56–58
Flaker knives		CHIPPER	56–58
Reducer knives		CHIPPER	56–58
Planer knives		SVERKER 21, SLEIPNER	58–60
Shear knives, I	hot	CALDIE, ORVAR 2 MICRODIZED, UNIMAX	52–54
•	c old thin stock	SVERKER 21	58–60
	thick stock	CALDIE, RIGOR, VANADIS 4 EXTRA CALMAX, SLEIPNER, UNIMAX	56–58 54–58
Circular slitting knives		SVERKER 21, RIGOR, SLEIPNER, VANADIS 4 EXTRA, VANADIS 6, VANADIS 10, VANADIS 23 UNIMAX	58–62 56–64 54–58
Plastic granulator knives		RIGOR, SVERKER 21, SLEIPNER, VANADIS 4 EXTRA CALDIE, VANADIS 6, VANADIS 10, VANADIS 23 UNIMAX	58–60 58–64 54–58
Tobacco knives		ARNE	58–60
Fragmentation knives		CALMAX, RIGOR, SVERKER 21, SLEIPNER, VANADIS 4 EXTRA, VANADIS 6, VANADIS 10, VANADIS 23, UNIMAX	55–64

STEEL FOR DIE CASTING DIES

Uddeholm grade	Description/Applications
DIEVAR	A premium Cr-Mo-V alloyed hot work die steel with good high temperature strength and excellent hardenability, toughness and ductility. Suitable for medium to large dies in aluminium die casting. It meets the requirements of NADCA #207-2006
VIDAR SUPERIOR	A premium Cr-Mo-V alloyed hot work die steel (H11 modified) with good resistance to cracking and meets the requirements of NADCA #207–2006.
ORVAR SUPREME ORVAR SUPERIOR	Premium Cr-Mo-V-alloyed hot work die steel (H13) with good resistance to thermal fatigue. The steel are produced by a special melting and refining technique and meet the requirements of NADCA #207–2006.
QRO 90 SUPREME	A premium hot work die steel with high hot yield strength and good temper resistance. Especially suited for die casting of copper, brass and for small inserts and cores in aluminium die casting.
QRO 90 HT	A prehardened Uddeholm QRO 90 Supreme material supplied at 37–41 HRC and suitable for core pins.
IMPAX SUPREME	A prehardened Ni-Cr-Mo-steel supplied at ~310 HB suitable for die casting of zinc, lead and tin. Also used as a holder material and prototype dies.
HOLDAX	A prehardened steel with very good machinability supplied at ~310 HB for clamping and holding plates.
UNIMAX	A premium Cr-Mo-V alloyed steel with a good toughness and ductility up to a hardness of 58 HRC.

Qualitative Comparison of resistance to different die failures

Uddeholm grade	Heat checking	Gross cracking	Erosion	Indentation
DIEVAR				
ORVAR SUPREME				
ORVAR SUPERIOR				
VIDAR SUPERIOR				
QRO 90 SUPREME				
UNIMAX				

The longer the bar, the better.

Further information is given in the Uddeholm brochure "Die Steel and improved Productivity in Die Casting".

Selection Chart

Die part	Tin/Lead/Zinc	Aluminium/ Magnesium	Copper, Brass
Clamping plates Holder plates	HOLDAX/ IMPAX SUP. prehardened ~310 HB	HOLDAX/ IMPAX SUP. prehardened ~310 HB	HOLDAX/ IMPAX SUP. prehardened ~310 HB
Die Inserts	IMPAX SUP. ~310 HB ORVAR SUP. / SUPERIOR 46–52 HRC UNIMAX 52–56 HRC	ORVAR SUP. / SUPERIOR 42–48 HRC VIDAR SUPERIOR 42–48 HRC DIEVAR 44–50 HRC	QRO 90 SUP. 40–46 HRC ORVAR SUP. / SUPERIOR 40–46 HRC
Fixed inserts Cores	ORVAR SUP. / SUPERIOR 46–52 HRC	DIEVAR 46–50 HRC ORVAR SUP. / SUPERIOR 44–48 HRC QRO 90 SUP. 42–48 HRC	QRO 90 SUP. 40–46 HRC

SUP. = Supreme Cont.

Selection Chart

Die part	Tin/Lead/Zinc	Aluminium/ Magnesium	Copper, Brass
Core pins	ORVAR SUP. 46–52 HRC	QRO 90 SUP.* 44–48 HRC QRO 90 HT*	QRO 90 SUP. 42–46 HRC QRO 90 HT
Sprue parts	ORVAR SUP. 48–52 HRC	ORVAR SUP. / SUPERIOR 46–48 HRC QRO 90 SUP. 44–46 HRC	QRO 90 SUP. 42–46 HRC
Nozzle	ORVAR SUP. 35–44 HRC STAVAX ESR 40–44 HRC	ORVAR SUP. / SUPERIOR 42–48 HRC QRO 90 SUP. 42–46 HRC	QRO 90 SUP. 40–44 HRC ORVAR SUP. / SUPERIOR 42–48 HRC
Ejector pins	QRO 90 SUP. / ORVAR SUP. 46–50 HRC (nitrided)	QRO 90 SUP. / ORVAR SUP. 46–50 HRC (nitrided)	QRO 90 SUP. / ORVAR SUP. 46–50 HRC (nitrided)
Plunger Shot sleeve	ORVAR SUP. 42–46 HRC (nitrided)	ORVAR SUP. / SUPERIOR QRO 90 SUP. 42–48 HRC (nitrided)	QRO 90 SUP. / ORVAR SUP. / SUPERIOR 42–46 HRC (nitrided)

SUP. = Supreme * Surface treatment is recommended.

STEEL FOR EXTRUSION DIES

Uddeholm grade	Description/Applications
DIEVAR	A premium Cr-Mo-V alloyed hot work steel with good high temperature strength and excellent toughness and ductility. Recommended in dies and extrusion components where the demands on toughness and ductility are the highest.
HOTVAR	A premium hot work steel with very good high temperature properties. Can be hardened and tempered to 58 HRC giving an outstanding hot wear resistance.
UNIMAX	A premium Cr-Mo-V alloyed steel with a good toughness and ductility up to a hardness of 58 HRC.
VIDAR 1	A Cr-Mo-V-alloyed hot work steel (H11) with a good combination of high temperature strength, good toughness and good resistance to abrasion.
ORVAR 2 MICRODIZED	A Cr-Mo-V-alloyed hot work steel (H13) with good high temperature strength and good resistance to abrasion. The steel is widely used for extrusion tooling.
QRO 90 SUPREME	A premium hot work steel with very good strength and hot hardness at elevated temperatures. The steel can be recommended for all types of extrusion tooling subjected to maximum working temperatures.
ALVAR 14 / ALVAR	A Cr-Ni-Mo-alloyed hot work steel used for support parts for extrusion tooling, e.g. backers and bolsters.
IMPAX SUPREME	Prehardened Ni-Cr-Mo-alloyed steel supplied at 290–330 HB and suitable for mantles.

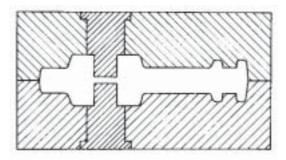
Qualitative comparison of resistance to different tool failures

Uddeholm grade	Hot wear	Plastic deformation	Premature cracking	Heat checking
ORVAR 2 M				
VIDAR 1				
QRO 90 SUP.				
HOTVAR				
DIEVAR				
UNIMAX				

The longer the bar, the better. M = Microdized SUP. = Supreme

Selection Chart

Tool part	Aluminium, Magnesium	Copper alloys	Steel
Support tools (at lower temp.)	IMPAX SUP.	IMPAX SUP.	IMPAX SUP.
	~310 HB	~310 HB	~310 HB
Wedge block	IMPAX SUP.	IMPAX SUP.	IMPAX SUP.
	~310 HB	~310 HB	~310 HB
	ALVAR 14 /	ALVAR 14 /	ALVAR 14 /
	ALVAR	ALVAR	ALVAR
	300–400 HB	300-400 HB	300-400 HB
Bolster	ALVAR 14 /	ALVAR 14 /	ALVAR 14 /
	ALVAR	ALVAR	ALVAR
	45 HRC	45 HRC	45 HRC
Die ring	ORVAR 2 M	QRO 90 SUP.	QRO 90 SUP.
	40–44 HRC	40–44 HRC	40–44 HRC
Die	VIDAR 1/ORVAR 2M/ QRO 90 SUP. 45–50 HRC DIEVAR 46–52 HRC HOTVAR 54–58 HRC UNIMAX 52–58 HRC	QRO 90 SUP. 45–49 HRC	QRO 90 SUP. 44–46 HRC


SUP. = Supreme, M = Microdized

Selection Chart

Tool part	Aluminium, Magnesium	Copper alloys	Steel
Mantle Intermediate liner	IMPAX SUP. ~310 HB ORVAR 2 M 37–43 HRC	IMPAX SUP. ~310 HB ORVAR 2 M 37–43 HRC	IMPAX SUP. ~310 HB ORVAR 2 M 37–43 HRC
Liner	ORVAR 2 M 44–48 HRC QRO 90 SUP. 44–48 HRC DIEVAR 44–50 HRC		ORVAR 2 M 44–48 HRC
Dummy block	QRO 90 SUP. 44–48 HRC DIEVAR 46–52 HRC	QRO 90 SUP. 44–48 HRC	QRO 90 SUP. 44–48 HRC
Fastener for fixed dummy block	IMPAX SUP. ~310 HB		
Stem	ORVAR 2M 46–50 HRC	ORVAR 2M 46–50 HRC	ORVAR 2M 46–50 HRC
Mandrel	ORVAR 2 M 46–50 HRC QRO 90 SUP. 46–49 HRC	QRO 90 SUP. 45–49 HRC DIEVAR 46–52 HRC	QRO 90 SUP 45–49 HRC

SUP. = Supreme, M = Microdized

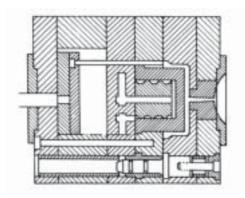
STEEL FOR FORGING DIES

Uddeholm grade	Description/Applications
DIEVAR	A premium Cr-Mo-V alloyed hot work steel with good high temperature strength and excellent toughness and ductility. Recommended in dies where the demands on toughness and ductility are the highest.
HOTVAR	A premium hot work steel with very good high temperature properties. Can be hardened and tempered to 58 HRC giving an outstanding hot wear resistance. Recommended as small inserts in "special forging" applications.
ORVAR SUPREME (H13) VIDAR SUPERIOR (modified H11)	Premium Cr-Mo-V-alloyed hot work die steel with good high temperature strength, very good toughness and resistance to hot wear.
QRO 90 SUPREME	A premium hot work die steel with very good strength and hot hardness at elevated temperatures. Recommended for inserts and stamping of copper alloys.
UNIMAX	A premium Cr-Mo-V alloyed steel with good toughness and ductility up to a hardness of 58 HRC.

Qualitative comparison of resistance to different tool failures

Uddeholm grade	Hot wear	Plastic deformation	Premature cracking	Heat checking
VIDAR SUPERIOR				
ORVAR SUPREME				
QRO 90 SUPREME				
HOTVAR				
DIEVAR				
UNIMAX				

The longer the bar, the better.


Selection Chart—Press Forging

Tool part	Aluminium, Magnesium	Copper alloys	Steel
Die	QRO 90 SUPREME 44–50 HRC DIEVAR 46–52 HRC ORVAR SUPREME 44–52 HRC	QRO 90 SUPREME 42–48 HRC	VIDAR SUPERIOR/ ORVAR SUPREME/ DIEVAR 40–50 HRC QRO 90 SUPREME 42–48 HRC UNIMAX 50–56 HRC
Insert, cores	QRO 90 SUPREME 44–50 HRC	QRO 90 SUPREME 44–50 HRC HOTVAR 52–54 HRC	QRO 90 SUPREME 44–50 HRC HOTVAR 52–56 HRC UNIMAX 50–56 HRC

Selection Chart—Trimming Dies

Tool part	Aluminium, Magnesium	Copper alloys	Steel
Punch/Die	RIGOR	RIGOR	SVERKER 21
(hot)	58–60 HRC	58–60 HRC	58–60 HRC
Punch/Die	RIGOR	RIGOR	RIGOR
(cold)	56–58 HRC	58–60 HRC	56–58 HRC

MATERIALS FOR PLASTIC MOULDS

Uddeholm recommends the following steel:

Uddeholm grade	Description/Applications
IMPAX SUPREME	A prehardened Ni-Cr-Mo-steel, supplied at 290–330 HB, with excellent polishing and photo-etching properties. Suitable for a wide range of injection moulds, blow moulds and extrusion dies.
NIMAX	Low carbon steel with delivery hardness of 360–400 HB. Excellent machinability and weldability. Very good toughness, polishability and texturing properties.
STAVAX ESR	A through hardening corrosion resistant mould steel with a very good polishability. Recommended for medium and small moulds.
MIRRAX ESR	A through hardening corrosion resistant mould steel with a very good polishability. Recommended for medium and large moulds.
UNIMAX	A steel with very good hardenability suitable for surface treatment. Excellent combination of wear resistance and toughness. Recommended for long run moulds and for moulding of reinforced plastics.

Uddeholm grade	Description/Applications
POLMAX	A through hardening corrosion resistant mould steel with an excellent polishability.
CORRAX	A precipitation hardening steel with extremely good corrosion resistance.
ORVAR SUPREME	A versatile through hardening 5% Cr mould and die steel with good wear resistance and polishability.
RIGOR	A through hardening steel recommended for very long production runs of smaller complicated moulding.
ELMAX VANADIS 4 EXTRA VANADIS 6 VANADIS 10	Powder metallurgically produced mould steel characterized by very good dimension stability, good polishability and wear resistance. Uddeholm Elmax is corrosion resistant, Uddeholm Vanadis 4 Extra has the highest toughness and Uddeholm Vanadis 10 the best wear resistance. Recommended for long production runs of smaller and complicated shapes and/or abrasive plastics.
VANCRON 40	Uddeholm Vancron 40 is a good alternative to surface coating in order to reduce galling, sticking and adhesive wear and reduce friction. It also has a high polishability.
HOLDAX	Prehardened holder steel, supplied at 290–330 HB, with a very good machinability.
RAMAX HH RAMAX LH	Prehardened corrosion resistant sulphurized steel. Uddeholm Ramax HH is supplied at 320–352 HB and can be used for dies and calibers for plastic extrusion as well as for holders/bolsters. Uddeholm Ramax LH is supplied at 270–310 HB and has an extremely good machinability. Main application is mould bases.
ALUMEC	High strength Al-alloy supplied at ~160 HB. Recommended for blow moulds, prototype moulds and for short runs with low demands on strength and wear resistance.

MOLDMAX HH	High strength Beryllium-Copper alloy, supplied at 40 HRC.
MOLDMAX XL	High strength Nickel-Tin-Copper alloy supplied at ~30 HRC. The different Moldmax alloys are suitable mould materials for a variety of moulding situations where a combination of high thermal conductivity, corrosion resistance and good polishability are needed.

For more detailed recommendations, see the application brochure "Steel for Moulds".

Property Comparison Guide for Mould Steel

Uddeholm grade	Machin- ability*	Wear resistance	Polishability	Corrosion resistance
IMPAX SUPREME		_		
IMPAX HI HARD				
NIMAX				
STAVAX ESR				
MIRRAX ESR				
UNIMAX				
POLMAX				
CORRAX				
ORVAR SUPREME				
RIGOR				
ELMAX				
VANADIS 4 EXTRA				
VANADIS 6				
VANADIS 10				
VANCRON 40				
HOLDAX				
RAMAX HH				
RAMAX LH				

^{*} Uddeholm Impax Supreme, Uddeholm Nimax, Uddeholm Holdax, Uddeholm Ramax HH and Uddeholm Ramax LH are tested in prehardened condition.

Uddeholm Corrax is tested in solution treated condition.

MOULD STEEL SELECTION

General Recommendations

	D			
		Recommended Steel Hardness		
Process	Material	grade	HRC (HB)	
rrocess	Material	grade	пкс (пв)	
Injection moulding	Thermoplastics - prehardened mould steel	ALUMEC IMPAX SUPREM NIMAX	(~160) 1E 33(~310) ~380	
	– through hardened mould steel	CORRAX ORVAR SUPRE STAVAX ESR MIRRAX ESR UNIMAX POLMAX ELMAX VANADIS 4 EX VANADIS 6	45–52 45–50 50–58 45–52 58–60	
	Thermoset plastics	RIGOR, ELMAX UNIMAX VANADIS 4 EX VANADIS 6	52–58	
Compres- sion/Trans- fer moulding	Thermoset plastics	STAVAX ESR MIRRAX ESR UNIMAX ELMAX ORVAR SUPRE VANADIS 4 EX VANADIS 6		
Blow moulding	General	IMPAX SUPREM ALUMEC NIMAX	1E 33(~310) (~160) ~380	
	PVC	STAVAX ESR MIRRAX ESR RAMAX HH CORRAX	45–52 45–50 37(~340) 36–50	

General Recommendations

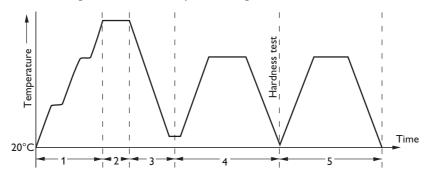
Process	Material	Recomme Steel grade l	nded Hardness HRC (HB)
Extrusion	General	IMPAX SUPREME NIMAX	33(~310) ~380
	PVC	STAVAX ESR MIRRAX ESR RAMAX HH CORRAX	45–52 45–50 37(~340) 36–50

Special Recommendations

Special req. or demand	Example	Recommended Steel Hardness grade HRC (HB)
Large mould size	For automotive components, panels, bumpers, fascias, etc.	ALUMEC (~160) IMPAX SUPREME 33(~310) NIMAX ~380 CORRAX 36–46 ORVAR SUPREME 36–50 MIRRAX ESR 36–50
	As above but with lower demands on the surface finish	HOLDAX 33(~310) RAMAX HH 37(~340)
High surface finish	For moulding optical/medical parts, clear covers/panels	STAVAX ESR 45–52 MIRRAX ESR 45–50 UNIMAX 50–58 POLMAX 45–52 ELMAX 58–60 VANADIS 4 EXTRA 58–62 ORVAR SUPREME 45–52
Complex shapes	For large automobile/household components	IMPAX SUPREME 33(~310) CORRAX 34–46 NIMAX ~380 MIRRAX ESR 36–50
	2. For small parts with low wear demands	IMPAX SUPREME 33(~310) CORRAX 34-46 NIMAX ~380

Special Recommendations

Special req. or demand	Example	Recommended Steel Hardness grade HRC (HB)	
Complex shapes	3. For small parts with high wear demands, e.g. electrical/electronic mouldings	RIGOR 60–62 ORVAR SUPREME 50–52 STAVAX ESR 50–52 MIRRAX ESR 45–50 UNIMAX 56–58 ELMAX 58–60 VANADIS 4 EXTRA 58–62 VANADIS 6 60–64	
Abrasive moulding materials	Reinforced/filled moulding materials	RIGOR 58–62 ORVAR SUPREME 50–52 STAVAX ESR 50–52 MIRRAX ESR 45–50 UNIMAX 56–58 VANADIS 4 EXTRA 58–62 ELMAX 58–60 VANADIS 6 60–64	
Long production runs	For thermoplastic parts, including disposable cutlery, containers and packaging	STAVAX ESR 45–52 MIRRAX ESR 45–50 UNIMAX 52–58 ORVAR SUPREME 45–52 ELMAX 58–60 VANADIS 4 EXTRA 58–62 VANADIS 6 60–64	
Corrosive	 For corrosive moulding materials For humid moulding/mould storage conditions General resistance to surface staining/rusting Resistance to corrosion of cooling channels 	ELMAX 58–60 STAVAX ESR 45–52 MIRRAX ESR 45–50 (moulds) RAMAX HH 37(~340) RAMAX LH ~290 (holders) CORRAX 34–50	


Special req. or demand	Example		ded Hardness RC (HB)
Photo- etching	1. Pre-hardened steel	IMPAX SUPREME NIMAX	33(~310) ~380
	2. Through-hardened steel	ORVAR SUPREME STAVAX ESR MIRRAX ESR UNIMAX ELMAX VANADIS 4 EXTRA VANADIS 6	45–52 45–52 45–50 50–58 58–60 58–62 60–64
High thermal conductivity	For injection and blow moulds, cores and inserts; parts for hot runner systems	MOLDMAX* HH MOLDMAX* XL	~40 ~30

 $[\]ensuremath{^{*}}$ Moldmax is a trade mark registered by Brush Wellman Inc. Cleveland, Ohio.

NOTES	

PRINCIPLES OF HARDENING

Hardening normally means heating and quenching, followed by tempering. The following heat treatment sequence and guide-lines should be observed.

- Preheating. Heat slowly! Rapid heating increases the risk of distortion.
- 2 Austenitizing (hardening) temperature. Protect against decarburization by heating in a salt bath, protective atmosphere or vacuum. Decarburization of the surface increases the risk of cracking and low hardness.
- **Quenching.** Use the quenching medium specified for the grade concerned, i.e. water, oil, air, etc., to achieve the optimum as-quenched hardness. Oil hardening steel can be quenched in a step bath with good results. Steel which can be hardened in oil or air should preferably be cooled in air for minimum distortion.
 - Note: large blocks, however, should be quenched quickly enough to obtain a correct microstructure in the centre of the block. Discontinue cooling at approx. 50–70°C and temper immediately.
- **4, 5 Tempering.** Heat slowly to reduce the risk of distortion and cracking! Holding time at temperature min. 2 hours. After the first temper, allow the material to cool to room temperature! Temper *twice* in the case of tool steel and *three times* in the case of Uddeholm Vancron 40 and high speed steel. If extremely high austenitizing temperatures, >1100°C (2010°F), are used all Uddeholm Vanadis grades should be tempered three times in order to reduce the amount of retained austenite and to optimize the microstructure.

POWDER METALLURGY TOOL STEEL

PM Steel for improved production economy

The powder metallurgy (PM) process is a rapid solidification process for the manufacturing of high-speed steel and tool steel. This method eliminates the problems which arise when steel solidifies in ingot moulds, such as local variations in chemical composition and microstructure in the form of segregations.

The PM steel is melted in the usual manner, but when it is tapped, the steel is fragmented by high speed gas jets into a shower of steel droplets which quickly solidify into powder. Each particle can be regarded as a tiny ingot, free of segregations thanks to the rapid cooling. The tiny particles are then compacted to form billets which can be fabricated by means of ordinary methods such as forging and rolling to the desired dimensions.

The PM tool steel Uddeholm Vanadis 4 Extra, Uddeholm Vanadis 6, Uddeholm Vanadis 10, Uddeholm Vanadis 23 and Uddeholm Elmax are produced by a special PM process which gives a superclean tool steel, with improved properties over standard PM steel, like better polishability, toughness and bend strength. Uddeholm Vancron 40 is a nitrided PM steel offering advantages like low friction, antigalling and good resistance against adhesive wear and is an alternative to a surface coated PM steel in this respect.

- Dimensional changes are reduced during hardening due to the absence of segregations
- Tools made of PM steel feature a high and uniform level of performance
- PM steel permit sharper cutting edges on press tools
- PM steel are more ductile due to their lack of segregations
- The lack of segregations permits a more effective use of alloying elements and higher levels of alloying elements can be used than previously was possible with conventional steel
- Desirable characteristics such as abrasion resistance can be enhanced without sacrificing other vital properties

UDDEHOLM HIGH PERFORMANCE STEEL—HPS

Uddeholm High Performance Steel (HPS) markets the Uddeholm product range in other applications than industrial tooling, where the product characteristics of industrial tool steel lead to lower maintenance costs and contribute to enhanced performance and optimum overall economy. Development shall take place in close cooperation with manufacturers of machines and components.

HPS applications can be found anywhere within any industry:

- Recycling
- Pulp & Paper
- Steel Mill & Mining
- Manufacturing Industry
- Racing
- Engineering solutions

Recycling

Encompasses production processes, machine builders and component manufacturers operating businesses that reclaim or recycle material either themselves or through their customers. When recycling material there is almost always a stage wherein large pieces are reduced to smaller pieces by cutting or crushing. Profitability very much depends on how much material can be processed. Uddeholm's customers may be the machinery manufacturers themselves, or the end users, who recycle most types of material.

Pulp & Paper

Covers industries in the business of processing raw material from forestry. Examples are companies in the woodworking industry, board, paper and fibre pulp manufactures, and paper mills. Due to the often aggressive environment our stainless concept steel can be problem solvers.

Steel Mill & Mining

Includes the steelmaking and mining industries, along with companies providing service and maintenance related to these industries. There are many different applications where there is a need for more durable components with prolonged service life, where customers can benefit from better overall economy.

Manufacturing Industry

Covers manufacturing, where material from Uddeholm is used in large volumes and the customers manufacture large numbers of components. Customers are often machinery manufacturers or their subcontractors. Product examples are tool holders for cutting tools and components in automated production lines.

Racing

Includes material and components used for competitive purposes. Our target groups are teams who actively participate in competition, and component manufacturers whose customers use parts for racing. Examples of products that fit nicely into Uddeholm High Performance Steel are drive shafts, crankshafts, connecting rods, camshafts, valve guides, valve seats and fittings.

Engineering solutions

High Performance Steel largely targets end users, who often do not have their own engineering drawings or product manufacturing facilities. As a result we have to be able to produce and deliver finished, heat-treated and surface finished detail parts. Manufacturing takes place in our own production facilities, by external subcontracting manufacturers, or a combination. Parts can be delivered in their finished state of sample testing.

In full scale production we shall be able to offer assistance with providing optimal production paths, both internally and externally, based on previous test production. Products will then be phased in to some of the other industrial sectors.

HIGH PERFORMANCE STEEL FOR SHAFTS

Shafts are some of the most important components, they transfer torque and carry loads. Uddeholm High Performance Steel has a broad programme even for the very toughest conditions.

Some of the steel are delivered in prehardened condition. Products made from prehardened steel can be used directly after machining with no subsequent heat treatment, thus saving time.

The steel have many areas of application. The application can be optimised by choosing a steel type and supplementary heat treatment.

Example of steel used for shafts:

- **Uddeholm Dievar** is an excellent steel when strength is vitally important. After machining, the steel is hardened and tempered to the right hardness and thereby strength for the specific requirement.
- **Uddeholm Orvar Supreme** with good heat treatment properties mean stability with only minor changes in dimensions. The steel is successfully used as a drive shaft for track racing and rallycross.
- **Uddeholm THG 2000 HT** is an extremely strong, tough steel. A prehardened steel for production of finished components, with no need for subsequent heat treatment.
- **Uddeholm Nimax** is a prehardened universal steel with high toughness, excellent cutting properties and weldability.
- Uddeholm Impax Supreme is a prehardened steel, available in large dimensions, which can be used without subsequent heat treatment.

 Nitriding further enhances wear resistance while increasing corrosion resistance. Uddeholm Impax Supreme is a very clean steel which, like our other steel, is ultrasonically tested.

PRE-MACHINED TOOL STEEL

In tool manufacture, material cost represents only a small fraction (approx. 10%) of the total cost of the tool. Machining represents a considerably larger portion. It has been calculated that rough machining prior to heat treatment accounts for about 20% of the total cost. Some of the rough machining is less qualified and should not have to be done by skilled toolmakers.

Uddeholm has therefore invested in considerable resources for further processing of the tool steel. In order to give the customer a steel which is less expensive overall, we grind the tool steel in long runs to a standardised tool size and to a surface finish on which the toolmaker can layout directly. The pre-machined bar is delivered wrapped in protective paper in easy-to-handle 1-metre lengths.

From "black" to pre-machined—the advantages are many

Advantages for the toolmaker:

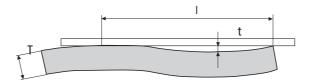
- · Time saving
- Less consumption of material
- Surface defects, flaws and cracks and decarburization eliminated
- Own personnel can be used for more qualified jobs
- · Simpler handling
- Cleaner handling (the chips stay at Uddeholm)
- Lower set-up costs
- Less tool wear
- Lower stock-keeping costs

All in all, this means better overall economy for the customer, i.e. greater and faster production at a lower cost.

Tolerances

Width +0.4/+0.8 mm

Maximum deviation in width on a 1000 mm long bar 0.1 mm.

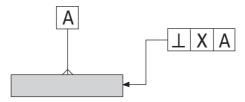

Thickness +0.4/+0.65 mm

Maximum deviation in thickness on a 1000 mm long bar 0.1 mm..

Flatness and straightness

Maximum deviation (t) devided by the length (l) according to the figure below, may not exceed the below stated values. As example for size 200×25 mm, measuring over 1000 mm, the maximum deviation may be t/1000 = 0.0005, t = 0.5 mm.

	Width mm			
Thickness T, mm	<160	≥160		
	t/l max			
4–8	0.0013	0.0015		
(8)–20	0.0008	0.0010		
(20)-200	0.0003	0.0005		



Surface finish

On the flat surfaces: Ra max 2.5 μm . On the edge surfaces: Ra max 6.3 μm .

Corner squareness

Material with a thickness up to 80 mm maximum deviation "X" = 0.10 mm. Thickness above 80 mm maximum deviation "X" = 0.15 mm.

MACHINING SERVICES

In addition to supplying a high proportion of our steel in the machined condition, in many cases we can offer following custom machining services.

Flat and square bars

- Surface milling: non standard sizes of large moulds and holder blocks
- Cavity milling: machining of cavities and holes according to customer drawings
- Drilling: holes for pillars/bushes and cooling channels
- · Grinding, fine milling: fine machined bars in non standard sizes

Round bars

- Turning, Peeling: non standard sizes
- Centerless grinding: non standard sizes
- Hollow bar: non standard sizes

Machining on order of semifinished or finished parts in annealed or hardened condition

- Components for extrusion like containers, stems and dummy blocks
- Machine components shafts, wheels, knives etc.

HINTS ON IMPROVED TOOL PERFORMANCE

Hot Work Tools

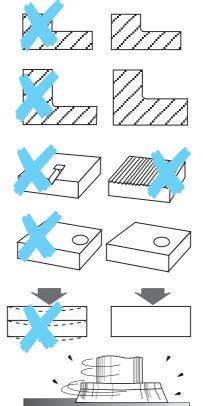
- Pre-heat tools to minimize thermal shock
- Minimize thermal fluctuations in the tool by using appropriate cooling methods
- Lubricate working surfaces to reduce contact with hot metal and aid release of parts
- Ensure tools are fully supported for maximum stability and to avoid deflection

Cold Work Tools

- · Pay careful attention to tool-setting and press alignment
- Ensure tools are fully supported for maximum stability and to avoid deflection
- Use lubricants as appropriate
- Re-grind tools regularly before major re-grinding is necessary. Use coolant to avoid overheating or grinding cracks
- · Re-temper after re-grinding operations
- Tooling subjected to repeated heavy loading will benefit from a lowtemperature stress-tempering operation after a long production run at 25–30°C below tempering temperature
- Do not use tools for blanking strip thicknesses which are greatly different from those for which they were designed

Plastic Moulds

- Stress temper after the rough machining but before fine machining for best results regarding dimensional changes, etching and welding
- Reduce the risk for corrosion on the mould surfaces and the risk for reduced cooling efficiency because of rust in cooling channels by using a corrosion resistant tool steel
- Wear due to reinforcement in the plastic can be reduced by changing to a more wear resistant tool steel or in some cases by surface treatment
- Reduce the risk for galling by using different material and/or different hardness on the two sliding metal surfaces
- Too low clamping force increases the risk for flashes and for deformation of the edges of the parting line


HINTS ON BASIC TOOL DESIGN

- Design around standard sizes wherever possible. Uddeholm Tooling normally supplies oversized bar with a machining allowance to finish at a convenient nominal size, e.g. $125 \times 25 \text{ mm}$
- · Use adequate overall dimensions!

Unmachined cross section: $133 \times 28 \text{ mm}$ Pre-machined cross section: $125 \times 25 \text{ mm}$ with machining allowance

- · Avoid sharp corners!
- Avoid uneven sections!
- Avoid potential stress raising marks, e.g. cold stamps, rough machining!
- Leave sufficient stock thickness between holes and plate edges!
- Solid blocks resist deflection!
- Remove surface decarburization!

HINTS ON TOOL HEAT TREATMENT

- Check thermocouples regularly
- Stress relieve tools after rough-machining
- Fully pre-heat
- Quench in the correct medium
- · Temper immediately after quenching
- Double temper (triple temper Uddeholm Vanadis)
- Don't hurry the heat treatment operation
- Don't forget to protect tools against decarburization or carburization
- Don't over-heat, over-soak
- · Don't re-harden tools without annealing first

For further information see the Uddeholm brochure "Heat treatment of tool tteels".

X

HINTS ON REPAIR WELDING

Even with the very best equipment and properly designed consumables, tool steel cannot be welded successfully unless considerable care is exercised in both joint preparation and in the actual welding operation. Recommended procedures are given in some detail on the product information brochures for the Uddeholm Weld range.

The following supplementary points can be made:

- 1. All dirt and grease must be thoroughly removed
- 2. On finished tools, protect surrounding area from spatter
- 3. Careful joint preparation is vital and welding should be performed immediately
- 4. Tools must be slowly pre-heated before welding
- 5. The principle is to put down a number of small cross section runs with low heat input, to clad the joint in weld metal, before increasing size of run and heat input for the remaining joint filling
- 6. Cool the tool slowly down to 50-70°C (120-160°F)

- 7. If welding has been performed on soft-annealed material, a soft annealing should be performed after finishing
- 8. If welding has been performed on material in hardened condition, a tempering should be performed after welding

For welding Uddeholm tool steel the following weld rod materials are recommended:

Coated electrode:

Impax Weld, QRO 90 Weld, Caldie Weld and Calmax/Carmo Weld

TIG filler rod:

Impax TIG-Weld, Nimax TIG-Weld, Stavax TIG-Weld, Unimax TIG-Weld, QRO 90 TIG-Weld, Dievar TIG-Weld, Calmax/Carmo TIG-Weld, Corrax TIG-Weld, Caldie TIG-Weld and Moldmax WeldPak

For further information see the Uddeholm brochure "Welding tool steel".

HINTS ON GRINDING TOOL STEEL

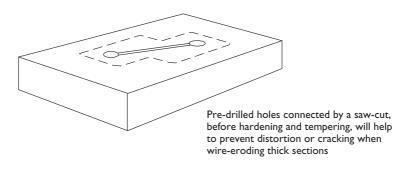
As in all machining operations operator technique and experience, tool and machine type and condition all play a part in a successful grinding operation.

- · Ensure that the part is firmly secured to avoid vibration
- Use properly dressed, soft, open-grained grinding wheels wherever possible
- · Restrict the peripheral speed and use plenty of coolant
- Refer to the grinding wheel manufacturer for specific advice on wheel selection and use
- Re-temper tools after re-grinding operations
- · Remove any "feather-edge" after grinding
- Don't use excessive pressure when grinding, to avoid burning and grinding cracks
- · Don't grind tools in the untempered condition

For further information see the Uddeholm brochure "Grinding tool steel".

HINTS ON EDM

Electro Discharge Machining (EDM'ing)


When spark eroding cavities, one or two important points should be noted in order to obtain satisfactory results. During the operation the surface layer of the steel is re-hardened and consequently in a brittle state. This may result in fatigue cracking and shortened tool life. To avoid this problem the following precautions should be taken:

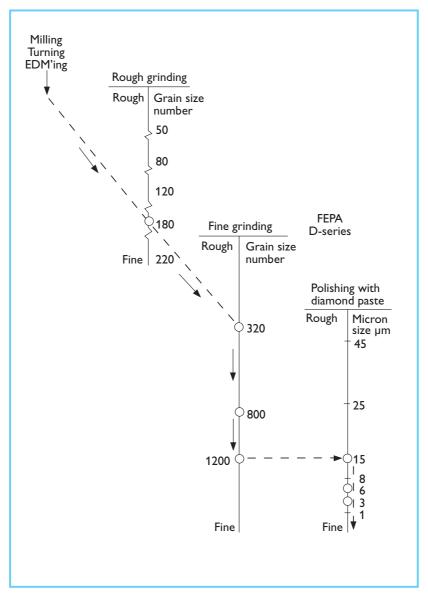
- Finish the EDM operation by "fine" sparking (i.e. low amperage, high frequency)
- The affected surface layer should be removed by polishing or stoning
- If the spark-eroded surface texture is to be used in the finished mould it should be re-tempered at a temperature 15–20°C below that used previously
- If the spark-eroded surface is to be textured by photo-etching it is important that all of the surface layer affected is carefully removed by stoning etc.

For further information see the Uddeholm brochure "EDM of tools steel".

Wire erosion

Complicated shapes can be easily cut from hardened steel blocks by this process. However, hardened steel always contains stresses, and when large volumes of steel are removed in a single operation, distortion may be caused or even cracking especially if the tool is low temperature tempered. These difficulties can be reduced by drilling holes joined by a saw-cut slot in the proposed aperture, before heat treatment; this allows the work piece to adjust to the final shape and stress pattern, during heat treatment.

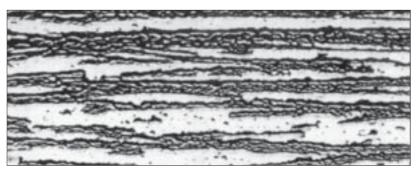
HINTS ON POLISHING MOULD STEEL


In spite of an increasing number of mechanical polishing aids, the skilled technique and judgement of an experienced polisher is still an essential ingredient in obtaining the required surface finish as quickly as possible.

- Choose a good quality mould steel. All Uddeholm mould steel are vacuum de-gassed and/or electro-slag-refined (ESR) during manufacture to give a clean and homogeneous structure suitable for producing high surface finishes
- Carefully heat treat parts to be hardened, to give a uniform hardness and steel structure, this will help to give consistent polishing results.
- Follow a recommended polishing sequence
- Ensure absolute cleanliness at every stage of the polishing process.
- Do not transfer abrasive particles from one polishing step to the next
- · Avoid excessive pressure when using mechanical polishing equipment

Follow the recommended polishing sequences given in the Uddeholm brochure "Polishing mould steel". A typical sequence is shown on the opposite page.

A highly polished mould in Uddeholm Stavax ESR which produces the body for an electric kettle.


A typical polishing sequence.

HINTS ON PHOTO-ETCHING

Uddeholm Impax Supreme prehardened mould steel and Uddeholm Orvar Supreme yield particularly good and consistent results after photoetching due to the very low sulphur content.

- If a number of parts are included in a tool and these are to be etched with the same pattern, the starting material and the rolling direction should be the same for these parts
- Complete the machining operation by stress-relieving, followed by finish-machining
- When etching heavy sections of Uddeholm Impax Supreme an extra tempering at 550°C before the etching is recommended
- Spark-eroded surfaces should always be ground or polished, otherwise re-hardened surface layers from the spark-erosion will cause a poor etching result
- · Flame-hardening should be done after photo-etching
- In some cases, a welded tool can be photo-etched, provided that the same material is used in the weld as in the tool itself. In such cases the welded area should be indicated to the photo-etching company
- · If a tool is to be nitrided this must be done after photo-etching
- The surface area of a mould cavity is greatly increased by texturing, which
 may cause ejection problems. Early consultation with the photo-etching
 specialist is recommended to determine the optimum draft angel for the
 shape and pattern concerned

For further information see the brochure "Photo-etching of tool steel".

Typical photo-etched pattern.

HARDNESS CONVERSION TABLE

Approx. comparison between hardness and ultimate tensile strength.

Rock	well			Appro	x. UTS	Shore
HRC	HRB	Brinell*	Vickers 30 kg		kp/mm²	sclero- scope
Tinco					-	
	78	133	140	446	46	21
	85	152	160	510	52	24
	91	171	180	570	58	26
	95	190	200	637	65	29
	98	209	220	696	71	32
		228	240	756	77	34
		247	260	824	84	37
		265	280	883	90	40
30		284	300	951	97	42
33		303	320	1020	104	45
35		322	340	1080	110	47
37		341	360	1150	117	50
39		360	380	1210	123	52
41		379	400	1280	130	55
42		397	420	1340	137	57
44		415	440	1410	144	59
46		433	460	1470	150	62
47		452	480	1530	156	64
48		471	500	1610	164	66
50		488	520	1690	172	67
51		507	540	1770	180	69 74
52		525	560	1850	188	71 72
53		545	580	1940	198	72
54		564	600			74
55		584	620			75
56		601	640			77 70
57		620	660			79
59		638	680			80
59			700 720			81 93
60			720 740			83
61			740 740			84
62 63			760 780			86 97
64			780 900			87 oo
64			800 820			88 90
65						90 91
66			840 860			91 92
						92 93
66			880			73

 $^{^{}st}$ 10 mm ball, 3 000 kg load.

CONVERSION FACTORS AND FORMULAE

Length

To convert	to	multiply by
in in mm cm ft m yd m miles km	mm cm m in in ft m yd km miles	25.40 2.540 0.0254 0.0394 0.3937 0.3048 3.281 0.9144 1.094 1.609 0.6214

Mass (weight)

To convert	to	multiply by
lb lb kg kg tons ²⁾⁾ tons ²⁾ ton ¹⁾ kg/m kg/m kg/ft kg/ft lb/ft	kg ton ¹⁾ lb tons ²⁾ kg ton ¹⁾ tons ²⁾ lb/ft kg/ft kg/m lb/m kg/m	0.4536 0.0004536 2.205 0.00098 1016 1.016 0.9844 0.672 0.3281 0.3048 7.23 1.48

 $^{^{1)}}$ 1 ton (metric) = 1000 kg = 2205 lbs

Area

To convert	to	multiply by
mm ² in ² cm ² in ² ft ² m ²	in ² mm ² in ² cm ² m ² ft ² yd ² m ²	0.00155 645.16 0.1550 6.452 0.0929 10.76 1.196
yd^2	m ²	0.8361

Area of circle: $\pi \cdot r^2 \approx 0.7854 \cdot D^2$

Volume

To convert	to	multiply by
in ³	mm^3	16.3862
cm³	in ³	0.06103
in ³	ft ³	0.000578
ft ³	in ³	1728
ft ³	m^3	0.02832
m ³	ft ³	35.3147
gal (UK)	1	4.546
Ī	gal (UK)	0.219969

²⁾ 1 ton (UK) = 1016 kg = 2240 lbs 1 short ton (USA) = 907 kg = 2000 lbs 1 long ton (USA) = 1 ton (UK) =1016 kg = 2240 lbs

Temperature conversion

°C to °F: multiply by 1.8, then add 32 °F to °C: substract 32, then multiply by 0.56

Exact formulae:

$$^{\circ}F = \frac{^{\circ}C \cdot 9}{5} + 32$$

$$^{\circ}$$
C = ($^{\circ}$ F -32) $\cdot \frac{5}{9}$

Pressure, tensile strength

To convert	to	multiply by
tons/in ² tons/in ² tons/in ² N/mm ² N/mm ²	N/mm ² kp/mm ² lb/in ² kp/mm ² lb/in ² tons/in ²	15.5 1.57 2240 0.102 145 0.065
kp/mm² kp/mm² kp/mm² lb/in² lb/in² lb/in² lb/in² MPa bar	tons/in² lb/in² tons/in² N/mm² tons/in² N/mm² kp/mm² MPa lb/in² In/in²	0.065 1422.34 0.635 9.81 0.00045 0.0069 0.000703 0.00689 145 14.51

Steel weights

Metric sizes

Flats and squares: $W(mm) \times T(mm) \times L(m) \times 0.00785 = weight in kg.$

Rounds: $D^2(mm) \times L(m) \times 0.0062 = weight in kg.$

Inch sizes

Flats and squares: $W(in) \times T(in) \times L(in) \times 0.2833 = weight in lbs.$

Rounds: $D^2(in) \times L(in) \times 0.2225 = weight in lbs.$

SI-UNITS OF MEASUREMENT

Factors and prefixes

Quantity	Name	Symbol	Derivation	Multiple	Factor	Prefix	Symbol
The seven basic units			1 000 000 000 000	10 ¹²	tera	Т	
Length	metre	m		1 000 000 000	10 ⁹	giga	G
Mass	kilogram	kg		1 000 000	10 ⁶	mega	M
Time	second	s		1 000	10 ³	kilo	k
El.current	ampere	Α		100	10 ²	hekto	h
Temperature	kelvin	K		10	10 ¹	deka	da
Lum.intensity	candela	cd					
Mol. w. in gr.	mole	mol		0,1	10 ⁻¹	deci	d
Ü				0,01	10-2	centi	С
Two suppleme	entary units			0,001	10 ⁻³	milli	m
Plane angle	radian	rad		0,000 001	10-6	mikro	μ
Solid angle	steradian	sr		0,000 000 001	10 ⁻⁹	nano	n
				0,000 000 000 001	10-12	piko	Р
Derived units	with own nai	mes		0,000 000 000 000 001	10 ⁻¹⁵	femto	f
Force	newton	1 N	= 1 kg · m/s ²	0,000 000 000 000 000 001	10 ⁻¹⁸	atto	a
Pressure	pascal	1 Pa	$= 1 \text{ N/m}^2$				
Energy, work	joule	1	= 1 Nm				
Power	watt	1 W	= 1 J/s	Conversion factors			

Additional units permitted until further notice

Volume	litre	11	= 10 ⁻³ m ³
Mass	ton	1 t	$= 10^3 \text{ kg}$
Energy	watt-hour	1 Wh	= 3600 Ws (J)
Pressure	bar	1 bar	= 100 kPa

Conversion factors

SI-units and permitted units

Other units

Length

	m	mm	in (inch)	ft (foot)	yd (yard)
1 m =	1	10 ³	39.3701	3.2808	1.0936
1 mm =	10 ⁻³	1	39.37 · 10 ⁻³	3.281 · 10 ⁻³	1.094 · 10 ⁻³
1 in (inch) =	25.4 · 10 ⁻³	25.4	1	83.33 · 10 ⁻³	27.78 · 10 ⁻³
1 ft (foot) =	0.3048	304.8	12	1	0.3333
1 yd (yard) =	0.9144	914.4	36	3	1
1 mile. eng. =	1.6093 · 10 ³	1.6093 · 10 ⁶	63.36 · 10 ³	5.28 10 ³	1.76 · 10 ³
1 naut. mil =	1.852 · 10 ³	1.852 · 10 ⁶	72.91 · 10 ³	6.076 10 ³	2.025 · 10 ³

1 km = 0.6214 mile, eng. = 0.5396 naut. mile 1 Å (Ångström) = 10⁻¹⁰ m = 10⁻⁴ μm

Area

	m²	mm²	in	ft²	Yd
1 m ² =	1	10 ⁶	1.55 · 10 ³	10.76	1.196
1 mm ² =	10 ⁻⁴	1	1.55 · 10 ⁻³	10.76 · 10 ⁻⁶	1.196 · 10 ⁻⁶
1 in ² =	0.645 · 10 ⁻³	645.16	1	6.944 · 10 ⁻³	0.772 · 10 ⁻³
1 ft ² =	92.9 · 10 ⁻³	92.9 · 10 ³	144	1	0.1111
1 yd ² =	0.8361	836.1 · 10 ³	1.296 · 10 ³	9	1
1 acre =	4.047 · 10 ³	4.047 · 10 ⁹	6.273 · 10 ⁶	43.56 · 10³	4.84 · 10 ³
1 mile ² eng. =	2.58999 · 10 ⁶	2.58999 · 10 ¹²	4.014 · 10 ⁹	27.88 · 10 ⁶	3.0976 · 10 ⁶

 $^{1 \}text{ km}^2 = 247.1 \text{ acre} = 0.3861 \text{ mile}^2 \text{ eng.}$

Volume

	m³	dm³	in ³	ft³	Yd³
1 m ³ =	1	10 ³	61.0237 · 10 ³	35.3147	1.308
1 l = l dm ³ =	10 ⁻³	1	61.02	35.31 · 10 ⁻³	1.3 · 10 ⁻³
1 in ³ =	16.387 · 10 ⁻⁶	16.387 · 10 ⁻³ 28.317	1	0.579 · 10 ⁻³	21.43 · 10 ⁻⁶
1 ft ³ =	28.317 · 10 ⁻³		1.728 · 10 ³	1	37.04 · 10 ⁻³
1 yd ³ =	0.76455	764.55	46.656 · 10 ³	27	1
1 gallon UK =	4.546 · 10 ⁻³	4.5461	277.4	0.1605	5.946 · 10 ⁻³
1 gallon US =	3.785 · 10 ⁻³	3.7854	231	0.1337	4.951 · 10 ⁻³

 $1 I = 1 dm^3 = 0.219969$ gallon UK = 0.264172 gallon US

 $1 \text{ cm}^3 = 0.061 \text{ in}^3$

Velocity

	m/s	km/h	ft/s	mile/h	kn (knpo)
1 m/s =	1	3.6	3.2808	2.2369	1.9438
1 km/h =	0.2778	1	0.9113	0.6214	0.54
1 ft/s =	0.3048	1.0973	1	0.6818	0.5925
1 mile/h =	0.447	1.6093	1.4666	1	0.869
1 kn (knop) =	0.5144	1.852	1.6878	1.1508	1

1 knop = 1 nautical mile/h;

1 mach = ca $1.2 \cdot 10^3$ km/h;

1 mph = 1 mile/h

Mass (weight)

	kg	g	lb (pound)	slug	oz (ounce)
1 kg =	1	10 ³	2.2046	68.52 · 10 ⁻³	35.274
1 g =	10 ⁻³	1	2.2 · 10 ⁻³	68.52 · 10 ⁻⁶	35.274 · 10 ⁻³
1 libra (pound) =	0.4536	453.59	1	31.08 · 10 ⁻³	16
1 slug =	14.594	14.5939 · 10 ³	32.17	1	514.8
1 onza (ounce) =	28.35 · 10 ⁻³	28.35	62.5 · 10 ⁻³	1.943 · 10 ⁻³	1
1 cwt larga GB =	50.8023	50.8023 · 10 ³	112	3.481	1.792 · 10 ³
1 ton. larga GB =	1.016 · 10 ³	1.016 · 10 ⁶	2.24 · 10 ³	69.62	35.84 · 10 ³
1 cwt.corta USA =	45.3592	45.3592 · 10 ³	100	3.108	1.6 · 10 ³
1 ton corta USA =	907.185	907.185 · 10 ³	2 · 10 ³	62.16	$32 \cdot 10^3$

1 ton. larga GB = 20 cwt. largas GB.

1 ton. corta USA = 20 cwt. cortas USA

1 kg = $0.9842 \cdot 10^{-3}$ ton. larga GB = $1.1023 \cdot 10^{-3}$ ton. corta USA 1 kg = $19.684 \cdot 10^{-3}$ cwt. larga GB = $22.046 \cdot 10^{-3}$ cwt corta USA

Density

	kg/m³	g/cm³	lb/in. ³	lb/ft
1 kg/m ³ =	1	10 ⁻³	36.13 · 10 ⁻⁶	62.43 · 10 ⁻³
1 g/cm ³ =	10 ³	1	36.13 · 10 ⁻³	62.428
1 lb/in ³ =	27.6799 · 10 ³	27.68	1	1.728 · 10 ³
1 lb/ft ³ =	16.0185	16.02 · 10 ⁻³	0.579 · 10 ^{–3}	1

m³/kg called specific volume

Force

	N	dyne	kp	lbf
1 N =	1	0.1 · 10 ⁶	0.10197	0.2248
1 dyn = 1 kp = 1 lbf =	10 · 10 ⁻⁶ 9.80665 4.448	1 980.665 · 10 ³ 444.8 · 10 ³	1.02 · 10 ⁻⁶ 1 0.4536	2.248 · 10 ⁻⁶ 2.2046 1

Una kilopondio (kp) también se denomina kilogramo-fuerza (kgf)

Moment of force

	Nm	kpm	lbf · in	lbf · ft
1 Nm =	1	0.102	8.851	0.7376
1 kpm =	9.8067	1	86.7962	7.233
1 lbf · in =	0.113	11.521 · 10 ⁻³	1	83.33 · 10 ⁻³
1 lbf · ft =	1.356	0.1383	12	1

Power

	W	kpm/s	kcal/h	hk	ft· lbf/s
1 W =	1	0.102	0.8598	1.36 · 10 ^{−3}	0.7376
1 kpm/s =	9.80665	1	8.432	13.33 · 10 ⁻³	7.233
1 kcal/h =	1.163	0.1186	1	1.581 · 10 ⁻³	0.8578
1 hk =	735.5	75	632.5	1	542.5
1 ft · lbf/s =	1.356	0.1383	1.166	1.843 · 10 ^{−3}	1
1 hp UK. US =	745.7	76.04	641.2	1.1014	550
1 Btu/h =	0.2931	29.89 ⋅ 10 ⁻³	0.252	398.5 · 10 ^{−6}	0.2162

1 kcal/s = $4.1868 \cdot 10^{3}$ W 1W = $238.8 \cdot 10^{-6}$ kcal/s = $1.341 \cdot 10^{-3}$ hp

Pressure (stress)

	Pa= N/m ²	N/mm²= MPa	bar	kp/mm²	lbf/in²(psi)
1 Pa= 1 N/m ^{2 =}	1	10 ⁻⁶	10 · 10 ⁻⁶	0.102 · 10 ⁻⁶	0.145 · 10 ⁻³
1 N/mm ² =1 MPa	10 ⁶	1	10	0.102	145
1 bar =	100 · 10 ³	0.1	1	10.2 · 10 ⁻³	14.5
1 kp/mm ² =	9.807 · 10 ⁶	9.807	98.07	1	1.4211 · 10 ³
1 kp/mm ² = at =	98.07 · 10 ³	98.07 · 10 ⁻³	0.9807	10 · 10 ⁻³	14.21
1 lb/in ² = psi =	6.895 · 10 ³	6.895 · 10 ⁻³	68.95 · 10 ⁻³	703	1
1 torr =	133.3	133.3 · 10 ⁻⁶	1.333 · 10 ⁻³	13.6 · 10 ⁻³	19.34 · 10 ⁻³
1 atm =	101.3 · 10 ³	0.1013	1.013	10.33 · 10 ⁻³	14.7

1 mm Hg = 13.6 mm water gauge

1 mm water gauge = 9.81 Pa

 $1 \text{ dyne/cm}^2 = 10Pa$

1 Pa = 7.501 · 10-3 torr = 9.868 . 10-6 atm

1 torr = 1 mm Hg at 0° C and 9.81 m/s²

1 atm = 760 mm Hg (torr) = 1.013 · 10³ milibar

Power

	J	kWh	kpm	kcal	ft· lbf
1 J =	1	0.278 · 10-6	0.102	0.239 · 10-3	0.7376
1 kWh =	3.6 · 10 ⁶	1	367.1 · 10 ³	859.8	2.655 · 106
1 kpm = 1 kcal =	9.80665 4.1868 · 10 ³	2.724 · 10 ⁻⁶ 1.163 · 10 ⁻³	1 426.9	2.342 · 10 ⁻³	7.233 3.088 · 10 ³
1 ft · lbf =	1.356	376 · 10 ⁻⁹	0.1383	323.8 · 10 ⁻³	1
1 erg = 1 Btu =	0.1 · 10 ⁻⁶ 1.055 · 10 ³	27.78 · 10 ⁻¹⁵ 0.293 · 10 ⁻³	10.2 · 10 ⁻⁹ 107.6	23.88 · 10 ⁻¹² 0.2522	73.76 · 10 ⁻⁹ 778.2

1 eV = 0.1602 · 10⁻¹⁸ J

1 J = $6.242 \cdot 10^{18}$ eV = 10^7 erg = $0.3777 \cdot 10^{-6}$ hkh 1 hkh = $2.648 \cdot 10^6$ J

CONVERSION TABLE

Temperature scales

Refer to the center column and find the number of degrees to be converted. If $^{\circ}F$ is to be converted to $^{\circ}C$, the required figure is to be found in the left-hand column under C; for converting $^{\circ}C$ to $^{\circ}F$ refer to the right-hand column.

С	0	F	С	0	F	С	0	F
- 17.8	0	32	132	270	518	299	570	1058
- 15.0	5	41	138	280	526	302	575	1067
- 12.2	10	50	143	290	554	304	580	1076
- 9.4	15	59	149	300	572	307	585	1085
- 6.7	20	68	154	310	590	310	590	1094
- 3.9	25	77	160	320	608	313	595	1103
- 1.1	30	86	166	330	626	316	600	1112
1.7	35	95	171	340	644	318	605	1121
4.4	40	104	177	350	662	321	610	1130
7.2	45	113	182	360	680	324	615	1139
10.0 12.8	50 55	122 131	188 193	370 380	698 716	327	620	1148
15.6	60	140	193	390	716	329	625	1157
18.3	65	149	204	400	752	332 335	630 635	1166 1175
21.1	70	158	210	410	770	338	640	1173
23.9	75	167	216	420	788	341	645	1193
26.7	80	176	221	430	806	343	650	1202
29.4	85	185	227	440	824	346	655	1211
32.2	90	194	232	450	842	349	660	1220
35.0	95	203	238	460	860	352	665	1229
37.8	100	212	243	470	878	354	670	1238
43	110	230	249	480	896	357	675	1247
49	120	248	254	490	914	360	680	1256
54	130	266	260	500	932	363	685	1265
60	140	284	263	505	941	366	690	1274
66	150	302	266	510	950	368	695	1283
71 77	160 170	320 338	268 271	515 520	959 968	371	700	1292
82	180	356	271	525	977	377 382	710 720	1310 1328
88	190	336 374	277	530	986	382 388	720	1346
93	200	392	277	535	995	393	730 740	1346
99	210	410	282	540	1004	399	750	1382
104	220	428	285	545	1013	404	760	1400
110	230	446	288	550	1022	410	770	1418
116	240	464	291	555	1031	416	780	1436
121	250	484	293	560	1040	421	790	1454
127	260	500	296	565	1049	427	800	1472

С	0	F	С	0	F	С	0	F
432	810	1490	671	1240	2264	910	1670	3038
438	820	1508	677	1250	2282	916	1680	3056
443	830	1526	682	1260	2300	921	1690	3074
449	840	1544	688	1270	2318	927	1700	3092
454	850	1562	693	1280	2336	932	1710	3110
460	860	1580	699	1290	2354	938	1720	3128
466	870	1598	704	1300	2372	943	1730	3146
471	880	1616	710	1310	2390	949	1740	3164
477	890	1634	716	1320	2408	954	1750	3182
482	900	1652	721	1330	2426	960	1760	3200
488	910	1670	727	1340	2444	966	1770	3218
493	920	1688	732	1350	2462	971	1780	3236
499	930	1706	738	1360	2480	977	1790	3254
504	940	1724	743	1370	2498	982	1800	3272
510	950	1742	749	1380	2516	988	1810	3290
516	960	1760	754	1390	2534	993	1820	3308
521	970	1778	760	1400	2552	999	1830	3326
527	980	1796	766	1410	2570	1004	1840	3344
532	990	1814	771	1420	2588	1010	1850	3362
538	1000	1832	777	1430	2606	1016	1860	3380
543	1010	1850	782	1440	2624	1021	1870	3398
549 554	1020 1030	1868 1886	788 793	1450	2642	1027	1880	3416
560	1030	1904	793 799	1460 1470	2660 2678	1032	1890	3434
566	1040	1904	799 804	1480		1038	1900	3452
571	1060	1940	80 4 810	1480	2696 2714	1043	1910	3470
577	1070	1958	816	1500	2714	1049	1920	3488
582	1070	1976	821	1510	2750	1054	1930	3506
588	1090	1994	827	1510	2768	1060	1940	3524
593	1100	2012	832	1530	2786	1066	1950	3542
599	1110	2030	838	1540	2804	1071 1077	1960 1970	3560 3578
604	1120	2048	843	1550	2822	1077	1980	3576
610	1130	2066	849	1560	2840	1082	2000	3632
616	1140	2084	854	1570	2858	1121	2050	3722
621	1150	2102	860	1580	2876	1149	2100	3812
627	1160	2120	866	1590	2894	1177	2150	3902
632	1170	2138	871	1600	2912	1204	2200	3992
638	1180	2156	877	1610	2930	1232	2250	4082
643	1190	2174	882	1620	2948	1260	2300	4172
649	1200	2192	888	1630	2966	1288	2350	4262
654	1210	2210	893	1640	2984	1316	2400	4352
660	1220	2228	899	1650	3002	1343	2450	4442
666	1230	2246	904	1660	3020	1371	2500	4532

WEIGHT TABLES

The tables apply for unalloyed steel, density 7.85. Alloyed steel is somewhat heavier; high speed steel, for example, is approx. 10% heavier.

Flat bars kg/m

	ui o ix	.			Thick	ness i	mm				
Width											
mm	2	3	4	6	8	10	12	16	20	25	30
10	0.16	0.23	0.31	0.47	0.63	0.79	_	_	_	_	_
25	0.39	0.59	0.79	1.18	1.57	1.96	2.36			4.91	
30	0.47	0.71	0.94	1.41	1.88	2.36	2.83	3.77		5.89	
40	0.63	0.94	1.26	1.88	2.51	3.14	3.77			7.85	
50	0.79	1.18	1.57	2.36	3.14	3.93	4.71	6.28			11.8
60	0.94	1.41	1.88	2.83	3.77	4.71	5.65	7.54		11.8	14.1
70 80	1.10 1.26	1.65 1.88	2.20 2.51	3.30 3.77	4.40 5.02	5.50 6.28	6.59 7.54		11.0 12.6	13.7 15.7	16.5
90	1.41	2.12	2.83	4.24	5.65	7.07	8.48		14.1	17.7	18.8 21.2
100	1.57	2.12	3.14	4.71	6.28	7.85	9.42		15.7	19.6	23.6
110	1.73	2.59	3.45	5.18	6.91	8.64	10.4	13.8	17.3	21.6	25.9
120	1.88	2.83	3.77	5.65	7.54	9.42	11.3	15.1	18.8	23.6	28.3
130	2.04	3.06	4.08	6.12	8.16		12.3	16.3	20.4	25.5	30.6
140	2.20	3.30	4.40	6.59	8.79	11.0	13.2	17.6	22.0	27.5	33.0
150	2.36	3.53	4.71	7.07	9.42	11.8	14.1	18.8	23.6	29.4	35.3
160	2.51	3.77	5.02	7.54	10.1	12.6	15.1	20.1	25.1	31.4	37.7
170	2.67	4.00	5.34	8.01	10.7	13.4	16.0	21.4	26.7	33.4	40.0
180	2.83	4.24	5.65	8.48	11.3	14.1	17.0	22.6	28.3	35.3	42.4
190 200	2.98 3.14	4.48 4.71	5.97 6.28	8.95 9.42	11.9 12.6	14.9 15.7	17.9 18.8	23.9 25.1	29.8 31.4	37.3 39.3	44.8 47.1
250	3.14	5.89	7.85	11.8	15.7	19.6	23.6	31.4	39.3	49.1	58.9
300	4.71	7.07	9.42	14.1	18.8	23.6	28.3	31. 4 37.7	39.3 47.1	58.9	70.7
350	5.50	8.24	11.0	16.5	22.0	27.5	33.0	44.0	55.0	68.7	82.4
400	6.28	9.42	12.6	18.8	25.1	31.4	37.7	50.2	62.8	78.5	94.2
450	7.07	10.6	14.1	21.2	28.3	35.3	42.4	56.5	70.7	88.3	
500	7.85	11.8	15.7	23.6	31.4	39.3	47.1	62.8	78.5	98.1	118
550	8.64	13.0	17.3	25.9	34.5	43.2	51.8	69.1	86.4	108	130
600	9.42	14.1	18.8	28.3	37.7	47.1	56.5	75.4	94.2	118	141
700	11.0	16.5	22.0	33.0	44.0	55.0	65.9	87.9		137	165
800	12.6	18.8	25.1	37.7	50.2	62.8	75.4	101	126	157	188
900	14.1	21.2	28.3	42.4	56.5	70.7	84.8	113	141	177	212
1000	15.7	23.6	31.4	47.1	62.8	78.5	94.2	126	157	196	236
1200	18.8	28.3	37.7	56.5	75.4	94.2	113	151	188	236	283

Flat bars kg/m

Width mm 32 40 50 60 70 80 90 100 120 125 10 -	140 - - - - - -
25 -	- - - -
30 7.54 - <td>- - -</td>	- - -
40 10.0 12.6 -<	- - -
50 12.6 15.7 19.6 -	- -
60	_
70 17.6 22.0 27.5 33.0 38.5 - </td <td></td>	
80 20.1 25.1 31.4 37.7 44.0 50.2 - - - - - 90 22.6 28.3 35.3 42.4 49.5 56.5 63.6 - - - 100 25.1 31.4 39.3 47.1 55.0 62.8 70.7 78.5 - 110 27.6 34.5 43.2 51.8 60.5 69.1 77.7 86.4 - - 120 30.1 37.7 47.1 56.5 65.9 75.4 84.8 94.2 113 -	-
90 22.6 28.3 35.3 42.4 49.5 56.5 63.6 - - - 100 25.1 31.4 39.3 47.1 55.0 62.8 70.7 78.5 - 110 27.6 34.5 43.2 51.8 60.5 69.1 77.7 86.4 - 120 30.1 37.7 47.1 56.5 65.9 75.4 84.8 94.2 113 -	
100 25.1 31.4 39.3 47.1 55.0 62.8 70.7 78.5 - - 110 27.6 34.5 43.2 51.8 60.5 69.1 77.7 86.4 - - 120 30.1 37.7 47.1 56.5 65.9 75.4 84.8 94.2 113 -	-
110 27.6 34.5 43.2 51.8 60.5 69.1 77.7 86.4 – – 120 30.1 37.7 47.1 56.5 65.9 75.4 84.8 94.2 113 –	_
120 30.1 37.7 47.1 56.5 65.9 75.4 84.8 94.2 113 -	_
	-
	-
130 32.7 40.8 51.0 61.2 71.4 81.6 91.9 102 125 128	454
140 35.2 44.0 55.0 65.9 76.9 87.9 98.9 110 132 137	154
150 37.7 47.1 58.9 70.7 82.4 94.2 106 118 141 147	165
160 40.2 50.2 62.8 75.4 89.7 101 113 126 151 157	176
170 42.7 53.4 66.7 80.1 93.4 107 120 134 160 167	187
180 45.2 56.5 70.7 84.8 98.9 113 127 141 170 177 190 47.7 59.7 74.6 89.5 104 119 134 149 179 186	198 209
200 50.2 62.8 78.5 94.2 110 126 141 157 188 196	209
	275
250 62.8 78.5 98.1 118 137 157 177 196 236 245 300 75.3 94.2 118 141 165 188 212 236 283 294	330
350 87.9 110 137 165 192 220 247 275 330 343	385
400 100 126 157 188 220 251 283 314 377 393	440
450 113 141 177 212 247 283 318 353 424 442	495
500 126 157 196 236 275 314 353 393 471 491	550
550 138 173 216 259 302 345 389 432 518 540	605
600 151 188 236 283 330 377 424 471 565 589	659
700 176 220 275 330 385 440 495 550 659 687	769
800 201 251 314 377 440 502 565 628 754 785	879
900 226 283 353 424 495 565 636 707 848 883	989
1000 251 314 393 471 550 628 707 785 942 981	1099
1200 301 377 471 565 659 754 848 942 1130 1178	1319

Cont.

WEIGHT TABLES

Flat bars kg/m

		-0									
Width mm	Thickness mm										
	150	180	200	250	300	350	400	450	500	550	600
160	188	_	_	_	_	_	_	_	_	_	_
170	200	_	_	_	_	_	_	_	_	_	-
180	212	254	_	_	_	_	_	_	_	_	-
190	224	269	_	_	_	_	_	_	_	_	-
200	236	283	314	_	_	_	_	_	_	_	-
250	294	353	393	491	_	_	_	_	_	_	-
300	353	424	471	589	707	_	_	_	_	_	-
350	412	495	550	687	824	962	_	_	_	_	-
400	471	565	628	786	942	1099	1256	_	_	_	-
450	530	636	707	883	1060	1236	1413	1590	_	_	-
500	589	707	785	981	1178	1374	1570	1766	1963	_	-
550	648	775	864	1079	1295	1511	1727	1943	2159	2375	-
600	707	848	942	1178	1413	1649	1884	2120	2355	2591	2826
700	824	989	1099	1374	1649	1923	2198	2473	2748	3022	3297
800	942	1130	1256	1570	1884	2198	2512	2826	3140	3454	3768
900	1060	1272	1413	1766	2120	2473	2826	3179	3533	3886	4239
1000	1176	1413	1570	1963	2355	2748	3140	3533	3925	4318	4710
1200	1413	1696	1884	2355	2826	3297	3768	4239	4710	5181	5652

Round and square bars, kg/m

Size mm	•		Size mm	•		Size mm	•	
1	0.006	0.008	43	11.4	14.5	85	44.5	56.7
2	0.025	0.031	44	11.9	15.2	86	45.6	58.1
3	0.055	0.071	45	12.5	15.9	87	46.7	59.4
4	0.10	0.13	46	13.1	16.6	88	47.7	60.8
5	0.15	0.20	47	13.6	17.3	89	48.8	62.2
6	0.22	0.28	48	14.2	18.1	90	49.9	63.6
7	0.30	0.38	49	14.8	18.9	91	51.1	65.0
8	0.39	0.50	50	15.4	19.6	92	52.2	66.4
9	0.50	0.64	51	16.0	20.4	93	53.3	67.9
10	0.62	0.79	52	16.7	21.2	94	54.5	69.4
11	0.75	0.95	53	17.3	22.1	95	55.6	70.9
12	0.89	1.13	54	18.0	22.9	96	56.8	72.4
13	1.04	1.33	55	18.7	23.8	97	58.0	73.9
14	1.21	1.54	56	19.3	24.6	98	59.2	75.4
15	1.39	1.77	57	20.0	25.5	99	60.4	76.9
16	1.58	2.01	58	20.7	26.4	100	61.7	78.5
17	1.78	2.27	59	21.5	27.3	105	68.0	86.6
18	2.00	2.54	60	22.2	28.3	110	74.6	95.0
19	2.23	2.83	61	22.9	29.2	115	81.5	104
20	2.47	3.14	62	23.7	30.2	120	88.8	113
21	2.72	3.46	63	24.5	31.2	125	96.3	123
22	2.98	3.80	64	25.3	32.2	130	104	133
23	3.26	4.15	65	26.1	33.2	135	112	143
24	3.55	4.52	66	26.9	34.2	140	121	154
25	3.85	4.91	67	27.7	35.2	145	130	165
26	4.17	5.31	68	28.5	36.3	150	139	177
27	4.49	5.72	69	29.4	37.4	155	148	189
28	4.83	6.15	70	30.2	38.5	160	158	201
29	5.19	6.60	71	31.1	39.6	165	168	214
30	5.55	7.07	72	32.0	40.7	170	178	227
31	5.92	7.54	73	32.8	41.8	175	189	240
32	6.31	8.04	74	33.8	43.0	180	200	254
33	6.71	8.55	75	34.7	44.2	185	211	269
34	7.13	9.07	76	35.6	45.3	190	223	283
35	7.55	9.62	77	36.6	46.5	195	234	299
36	7.99	10.2	78	37.5	47.8	200	247	314
37	8.44	10.8	79	38.5	49.0	205	259	330
38	8.90	11.3	80	39.5	50.2	210	272	346
39	9.38	11.9	81	40.5	51.5	215	285	363
40	9.86	12.6	82	41.5	52.8	220	298	380
41	10.6	13.2	83	42.5	54.1	225	312	397
42	10.9	13.9	84	43.5	55.4	230	326	415

Cont.

Round and square bars, kg/m

Nound	anus	squar e	pars, R	g/III		
Size mm	•		Size mm	•		
235 240 245 250 255 260	340 355 370 385 401 417	434 452 471 491 510 531	445 450 455 460 465 470	1221 1248 1276 1305 1333 1362	1555 1590 1625 1661 1697 1734	
265 270 275 280 285 290	433 449 466 483 501 518	551 572 594 615 638 660	475 480 485 490 495 500	1391 1420 1450 1480 1511 1541	1771 1809 1847 1885 1923 1963	
295 300 305 310 315 320	537 555 573 592 612 631	683 707 730 754 779 804	550 600 650 700 750 800	1865 2219 2605 3021 3468 3946	2375 2826 3317 3847 4416 5024	
325 330 335 340 345 350	651 671 692 713 734 755	829 855 881 907 934 962	850 900 1000	4454 4994 6165	5672 6359 7850	
355 360 365 370 375 380	777 799 821 844 867 890	989 1017 1046 1075 1104 1134				
385 390 395 400 405 410	914 938 962 986 1011 1036	1164 1194 1225 1256 1288 1320				
415 420 425 430 435 440	1062 1088 1114 1140 1167 1194	1352 1385 1418 1451 1485 1520				

DESIGNATIONS

HB HRB HRC HV	Hardness Brinell Hardness Rockwell B Hardness Rockwell C Hardness Vickers								
KCU KU	Impact toughness in kpm/cm ² at use of U-notched specimen Impact toughness in Joule at use of Charpy U-notched specimen								
KV	Impact toughness in Joule (earlier in kpm) at use of V-notched specimen								
N	newton, unit for force								
A ₅	Elongation in percentage of length after fracture. Measuring length when round specimens are used: L=5d. Diameter: d, is the original diameter.								
R _m	Tensile strength R _{mb} Bending strength								
R _p 0.2	0.2% proof strength R_{mc} Compressive strength								
Z	Reduction of area (%)								

SOME TECHNICAL INFORMATION FROM UDDEHOLM TOOLING

Tool Steel Application

Steel for coldwork tooling
Die steel and improved productivity in die casting
Die steel and components for extrusion
Steel for moulds

Treatment of Tool Steel

EDM of tool steel
Grinding tool steel
Heat treatment of tool steel
Photo-etching of tool steel
Polishing mould steel
Welding of tool steel
Cutting data recommendations for PM tool steel

Tool Steel Facts

Product information brochures for each Uddeholm steel grade

Technical Service Reports

Cutting data recommendations for each steel grade

Others

Uddeholm Welding consumables
Pre-machined cold work tool steel
Tooling solutions for advanced high strength steel
etc.

NOTES	
-	

NOTES			

This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty of specific properties of the products described or a warranty for fitness for a particular purpose.

Classified according to EU Directive 1999/45/EC For further information see our "Material Safety Data Sheets".

Edition 2, 10.2008

UDDEHOLM is present on every continent. This ensures you high-quality Swedish tool steel and local support wherever you are. ASSAB is our wholly-owned subsidiary and exclusive sales channel, representing Uddeholm in various parts of the world. Together we secure our position as the world's leading supplier of tooling materials.

For more information, please visit www.uddeholm.com or www.assab.com

