

TECHNICAL DATASHEET

Ti-6Al-7Nb FT 009 – Version 0

The Ti-6Al-7Nb Aluminium – Niobium alpha-beta alloy. Its biocompatibility and mechanical properties are superior to those of the Ti-6Al-4V. This alloy was conceived and developed in 1977 by a team of researchers at Gebruder Sulzer in Winterthur, Switzerland. Their aim was to create a titanium alloy that would meet the demands of the medical and surgical sectors.

APPLICATIONS	ADVANTAGES			
Medical	Biocompatibility Fatigue resistance Corrosion resistance			
STANDARDS	SHAPES			
ASTM F1295 ISO 5832-11 UNS R56700	BAR Diameter 1-45 mm Length 2800-3500 mm Tolerance Ø≤18 mm: h7-h9 – Ø>18 mm: h8-h11			

> CHEMICAL COMPOSITION

%	0	Fe	С	Н	N	Та	Al	Nb	Ti
min							5.5	6.5	residue
max	0.20	0.25	0.08	0.009	0.05	0.50	6.5	7.5	

TECHNICAL DATASHEET

Ti-6AI-7Nb FT 009 – Version 0

> MECHANICAL PROPERTIES

Bar

Condition	Rm Tensile strength (min MPa)	Rp0.2 Yield strength (min MPa)	Elongation (% min)	Necking (% min)
Annealed	900	500	10	25

Sheet and plate

Dimension thickness (x)	Rm Tensile strength (min MPa)	Rp0.2 Yield strength (min MPa)	4D elongation (% min)	Bend test Mandrel diameter
Up to 1.78 mm	900	800	10	9 T*
1.78-7.46 mm	900	800	10	10 T*
* T = thickness				

PHYSICAL PROPERTIES

Density (g/cm³)	4.52	
Hardness (HRc)	30-34	
Modulus of elasticity at 20 ℃ (N/mm²)	105 x10 ³	
Thermal conductivity at 20 ℃ (W/m ℃)		
Mean coefficient of thermal expansion at 20-200 ℃ (mm ℃)	1, 1	
Beta transus (℃)	1015	
Fusion temperature (℃)	1650	

The information and technical data contained in this sheet are for information purposes only. Only the information written on our material analysis certificates will be official.